Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Madsen, Henrik

  • Google
  • 5
  • 36
  • 33

Norwegian University of Science and Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2020Principles of Energy Flexible Buildingscitations
  • 2019Detailed spatio-temporal modelling of renewable energy islands: the case of the island of Krk, Croatiacitations
  • 2017A Stochastic Method to Manage Delay and Missing Values for In-Situ Sensors in an Alternating Activated Sludge Processcitations
  • 2017On site characterisation of the overall heat loss coefficient: comparison of different assessment methods by a blind validation exercise on a round robin test box33citations
  • 2016Combining Envisat and CryoSat-2 altimetry to inform hydrodynamic modelscitations

Places of action

Chart of shared publication
Parker, James
1 / 1 shared
Aelenei, Laura
1 / 1 shared
Pernetti, Roberta
1 / 5 shared
Frison, Lilli
1 / 1 shared
Engelmann, Peter
1 / 1 shared
Péan, Thibault
1 / 1 shared
Salom, Jaume
1 / 1 shared
Santos, Athila Quaresma
1 / 1 shared
Aelenei, Daniel
1 / 2 shared
Mlecnik, Erwin
1 / 1 shared
Jørgensen, Bo Nørregaard
1 / 1 shared
Jensen, Søren Østergaard
1 / 1 shared
Marszal-Pomianowska, Anna Joanna
1 / 1 shared
Junker, Rune Grønborg
1 / 1 shared
Johra, Hicham
1 / 12 shared
Lopes, Rui Amaral
1 / 1 shared
Knotzer, Armin
1 / 1 shared
Kazmi, Hussain
1 / 1 shared
Klein, Konstantin
1 / 1 shared
Ma, Zheng
1 / 9 shared
Dominkovic, Dominik Franjo
1 / 1 shared
Mimica, Marko
1 / 1 shared
Krajačić, Goran
1 / 1 shared
Mikkelsen, Peter Steen
1 / 2 shared
Munk-Nielsen, Thomas
1 / 1 shared
Stentoft, Peter Alexander
1 / 1 shared
Castaño, Sergio
1 / 1 shared
Bauwens, Geert
1 / 1 shared
Roels, Staf
1 / 2 shared
Jiménez, María José
1 / 1 shared
Bacher, Peder
1 / 2 shared
Ridler, Marc-Etienne
1 / 1 shared
Bauer-Gottwein, Peter
1 / 1 shared
Godiksen, Peter Nygaard
1 / 1 shared
Schneider, Raphael
1 / 8 shared
Ranndal, Heidi
1 / 1 shared
Chart of publication period
2020
2019
2017
2016

Co-Authors (by relevance)

  • Parker, James
  • Aelenei, Laura
  • Pernetti, Roberta
  • Frison, Lilli
  • Engelmann, Peter
  • Péan, Thibault
  • Salom, Jaume
  • Santos, Athila Quaresma
  • Aelenei, Daniel
  • Mlecnik, Erwin
  • Jørgensen, Bo Nørregaard
  • Jensen, Søren Østergaard
  • Marszal-Pomianowska, Anna Joanna
  • Junker, Rune Grønborg
  • Johra, Hicham
  • Lopes, Rui Amaral
  • Knotzer, Armin
  • Kazmi, Hussain
  • Klein, Konstantin
  • Ma, Zheng
  • Dominkovic, Dominik Franjo
  • Mimica, Marko
  • Krajačić, Goran
  • Mikkelsen, Peter Steen
  • Munk-Nielsen, Thomas
  • Stentoft, Peter Alexander
  • Castaño, Sergio
  • Bauwens, Geert
  • Roels, Staf
  • Jiménez, María José
  • Bacher, Peder
  • Ridler, Marc-Etienne
  • Bauer-Gottwein, Peter
  • Godiksen, Peter Nygaard
  • Schneider, Raphael
  • Ranndal, Heidi
OrganizationsLocationPeople

document

A Stochastic Method to Manage Delay and Missing Values for In-Situ Sensors in an Alternating Activated Sludge Process

  • Mikkelsen, Peter Steen
  • Munk-Nielsen, Thomas
  • Madsen, Henrik
  • Stentoft, Peter Alexander
Abstract

In the alternating activated sludge process with rule-based control, online N-measurements are of great importance for maintaining good control. These measurements can be delayed due to sensor processing time, turbulence at the location in the aeration tank where the sensor is placed, etc. The measurements may also be temporarily unavailable because of recalibration, communication faults or other errors. Here we present a method that handles such delay and missing observations. The model is based on zero order hold stochastic differential equations which use binary signals for influent flow and aeration to determine the state of the alternating process. It also uses measured ammonium and nitrate concentrations, which are shifted to account for delay. The method is developed and tested with data from a WWTP located in Kolding, Denmark. Results indicate that even though the model is simple, the model residuals and parameters are uncorrelated and the model predictions are 60% closer to the true values (measurements shifted to account for delay) than the delayed measurements are.

Topics
  • impedance spectroscopy