People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hryha, Eduard
Chalmers University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2024On the Origin of Enhanced Tempering Resistance of the Laser Additively Manufactured Hot Work Tool Steel in the As-Built Conditioncitations
- 2024Full Density Powder Metallurgical Cold Work Tool Steel through Nitrogen Sintering and Capsule-Free Hot Isostatic Pressingcitations
- 2024Machining of additively manufactured alloy 718 in as-built and heat-treated condition: surface integrity and cutting tool wearcitations
- 2024Machining of additively manufactured alloy 718 in as-built and heat-treated condition : surface integrity and cutting tool wearcitations
- 2024Machining of additively manufactured alloy 718 in as-built and heat-treated condition : surface integrity and cutting tool wearcitations
- 2024Fine-Tuning Melt Pools and Microstructures: Taming Cracks in Powder Bed Fusion—Laser Beam of a non-weldable Ni-base Superalloycitations
- 2023Effect of layer thickness on spatter properties during laser powder bed fusion of Ti-6Al-4Vcitations
- 2023Machining of additively manufactured alloy 718 in as-built and heat-treated condition : surface integrity and cutting tool wearcitations
- 2022In situ tempering of martensite during laser powder bed fusion of Fe-0.45C steelcitations
- 2021The role of microstructural characteristics of additively manufactured Alloy 718 on tool wear in machiningcitations
- 2020Effect of atomization on surface oxide composition in 316L stainless steel powders for additive manufacturingcitations
- 2020Full Densification in PM Steels Through Liquid Phase Sintering and HIP Approach
- 2018High temperature oxidation behavior of DMLS produced Inconel 625
- 2018Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloycitations
- 2015Nitrogen uptake of nickel free austenitic stainless steel powder during heat treatment : an XPS study
- 2015Influence of the PM-processing route and nitrogen content on the properties of Ni-free austenitic stainless steel
- 2015Thermodynamic And Kinetic Aspects Of Oxide Transformation During Sintering Of Cr-Prealloyed Pm Steels
- 2014EFFICIENCY AND TEMPERATURE RANGES OF ACTIVITY OF DIFFERENT REDUCING AGENTS DURING SINTERING OF CR-PREALLOYED PM STEELS
- 2014APPLICATION OF FRACTOGRAPHY FOR INVESTIGATION OF SURFACE OXIDE REDUCTION/TRANSFORMATION AND INTER-PARTICLE NECKS FORMATION DURING SINTERING OF PREALLOYED WITH Cr AND Mn PM STEELS
- 2014Surface Oxides on Gas and Water Atomized Steel Powders
- 2014Microstructure Development in Powder Metallurgy Steels: Effect of Alloying Elements and Process Variables
- 2014Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects
- 2014Thermogravimetry Study of the Effectiveness of Different Reducing Agents during Sintering of Cr-prealloyed PM Steels
- 2014THERMODYNAMIC AND KINETIC ASPECTS OF OXIDE TRANSFORMATION DURING SINTERING OF CR-PREALLOYED PM STEELS
- 2014Effectiveness of reducing agents during sintering of Cr-prealloyed PM steels
- 2013Effect of reducing agents on the sintering of chromium alloyed PM steels
- 2013Characteristics of Surface Oxides: Similarities and Differences between Gas and Water Atomized Steel Powders
- 2013Surface Oxides on Gas and Water Atomized Steel Powders
- 2013Parameters Controlling the Oxide Reduction during Sintering of Chromium Prealloyed Steelcitations
- 2013Effect of Processing Parameters on Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels
- 2013Effectiveness of Different Reducing Agents during Sintering of Cr-Prealloyed PM Steels
- 2013Optimisation of sintering atmospheres for controlled sintering of PM steels
- 2012Influence of nitrogen atmosphere on reduction mechanisms of a high strength austenitic steel
- 2012Process Control System for Delubrication of PM Steels
- 2011Oxide Transformation during Sintering of Cr and Mn Prealloyed Water Atomized Steel Powder
- 2011Characterization of high-Mn-Cr austenitic steel powder Fe-19Mn-18Cr-C-N
- 2011CHANGES IN OXIDE CHEMISTRY DURING CONSOLIDATION OF Cr/Mn WATER ATOMIZED STEEL POWDER
- 2011The Sintering Behaviour of Fe-Mn-C Powder System, Correlation between Thermodynamics and Sintering Process, Manganese Distribution and Microstructure Composition, Effect of Alloying Mode
- 2010Oxide Transformation During Sintering Of Prealloyed Water Atomized Steel Powder
Places of action
Organizations | Location | People |
---|
article
Microstructure Development in Powder Metallurgy Steels: Effect of Alloying Elements and Process Variables
Abstract
Microstructure of the powder metallurgy (PM) steels and especially mechanism of its formation differs significantly from the microstructure of the conventional steels even if composition will be exactly the same. The difference is not only connected to the presence of the pores, which are inalienable feature of the PM parts. Presence of the prior inter-particle boundaries, which can be contaminated by residual oxides, as well as microstructure heterogeneity are another characteristic features of the microstructure of PM steels. Microstructure heterogeneity is connected to the PM manufacturing process: powder mix, consisting of the base powder and additional alloying elements is compacted and then sintered. Fully prealloyed powder is not always possible to use in standard press & sintering route due to the solid solution strengthening of the ferrite resulting in bad powder compressibility. Hence, in order to provide good powder compressibility only pure iron or low-alloyed (typically <3 wt.%) powders are used. Required alloying elements and carbon (added as graphite) are further admixed in the powder form and are distributed during sintering by diffusion into iron particles at high temperatures. To assure satisfactory distribution of alloying elements, oxide layer, covering surface of the powder particles and hindering mass-transfer of the alloying elements, has to be removed first. This can be done by gaseous reducing agents as hydrogen and carbon monoxide. However, their cost and/or purity are of issue for modern alloyed PM steels. Admixed carbon, additionally to its function as alloying element, plays a role of effective reducing agent at higher temperatures. Paper summarizes the main features of microstructure formation during the whole sintering cycle (heating and isothermal sintering) and effect of alloying additives (different carbon sources, alloying elements) and processing parameters (sintering atmosphere composition, temperature profile) on the microstructure formation during conventional sintering process. Results indicate that for successful sintering of alloyed PM steels with homogeneous defect-free microstructure, hydrogen-rich atmospheres and high-temperature sintering are required.