People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nyborg, Lars
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Full Density Powder Metallurgical Cold Work Tool Steel through Nitrogen Sintering and Capsule-Free Hot Isostatic Pressingcitations
- 2024Corrosion resistance of additively manufactured aluminium alloys for marine applicationscitations
- 2023The effect of powder reuse on the surface chemical composition of the Scalmalloy powder in Powder Bed Fusion – Laser Beam processcitations
- 2023In situ Imaging of Precipitate Formation in Additively Manufactured Al-Alloys by Scanning X-ray Fluorescencecitations
- 2020Effect of atomization on surface oxide composition in 316L stainless steel powders for additive manufacturingcitations
- 2020Full Densification in PM Steels Through Liquid Phase Sintering and HIP Approach
- 2018Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloycitations
- 2017Influence of friction models on FE simulation results of orthogonal cutting processcitations
- 2015Nitrogen uptake of nickel free austenitic stainless steel powder during heat treatment : an XPS study
- 2015Influence of the PM-processing route and nitrogen content on the properties of Ni-free austenitic stainless steel
- 2015Thermodynamic And Kinetic Aspects Of Oxide Transformation During Sintering Of Cr-Prealloyed Pm Steels
- 2014EFFICIENCY AND TEMPERATURE RANGES OF ACTIVITY OF DIFFERENT REDUCING AGENTS DURING SINTERING OF CR-PREALLOYED PM STEELS
- 2014Surface Oxides on Gas and Water Atomized Steel Powders
- 2014Microstructure Development in Powder Metallurgy Steels: Effect of Alloying Elements and Process Variables
- 2014Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects
- 2014Thermogravimetry Study of the Effectiveness of Different Reducing Agents during Sintering of Cr-prealloyed PM Steels
- 2014THERMODYNAMIC AND KINETIC ASPECTS OF OXIDE TRANSFORMATION DURING SINTERING OF CR-PREALLOYED PM STEELS
- 2014Effectiveness of reducing agents during sintering of Cr-prealloyed PM steels
- 2013Characteristics of Surface Oxides: Similarities and Differences between Gas and Water Atomized Steel Powders
- 2013Surface Oxides on Gas and Water Atomized Steel Powders
- 2013Effect of Processing Parameters on Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels
- 2013Effectiveness of Different Reducing Agents during Sintering of Cr-Prealloyed PM Steels
- 2013An experimental investigation of the influence of cutting-edge geometry on the machinability of compacted graphite ironcitations
- 2012Methodology for evaluating effects of material characteristics on machinability-theory and statistics-based modelling applied on Alloy 718citations
- 2012Influence of nitrogen atmosphere on reduction mechanisms of a high strength austenitic steel
- 2012Process Control System for Delubrication of PM Steels
- 2011Oxide Transformation during Sintering of Cr and Mn Prealloyed Water Atomized Steel Powder
- 2011Characterization of high-Mn-Cr austenitic steel powder Fe-19Mn-18Cr-C-N
- 2011CHANGES IN OXIDE CHEMISTRY DURING CONSOLIDATION OF Cr/Mn WATER ATOMIZED STEEL POWDER
- 2010Oxide Transformation During Sintering Of Prealloyed Water Atomized Steel Powder
Places of action
Organizations | Location | People |
---|
article
Thermogravimetry Study of the Effectiveness of Different Reducing Agents during Sintering of Cr-prealloyed PM Steels
Abstract
Successful removal of the surface oxides, present on the powder particle surface, during initial stages of sintering is the prerequisite for the development of strong inter-particle necks and so high mechanical performance of the sintered PM components. In the case of water-atomized powder prealloyed with chromium, surface oxide is composed of an iron oxide layer, covering about 90–95 % of the powder surface, with some presence of more stable fine particulate oxides. Sufficiently strong inter-particle necks require as minimum full removal of the iron surface oxide layer. This can be achieved by a number of gaseous reducing agents (H2, CO, or mixture of both) as well as by carbon typically admixed in the form of graphite. The present study is focused on the analysis of the reducing ability of the different sintering atmospheres concentration of active gasses B10 vol%) as well as vacuum and their combined effect with graphite by means of thermal analysis. Number of effect characteristic for Cralloyed PM steels and their extent in different atmospheres were identified, namely risk of Cr-loss during sintering in high vacuum, risk of oxidation in CO-containing atmospheres, and nitrogen pickup, etc. When it comes to the oxidation/reduction processes, results indicate that the combination of the dry hydrogen-containing atmospheres and fine graphite grades allows successful sintering of chromium alloyed PM steels.