People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nyborg, Lars
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Full Density Powder Metallurgical Cold Work Tool Steel through Nitrogen Sintering and Capsule-Free Hot Isostatic Pressingcitations
- 2024Corrosion resistance of additively manufactured aluminium alloys for marine applicationscitations
- 2023The effect of powder reuse on the surface chemical composition of the Scalmalloy powder in Powder Bed Fusion – Laser Beam processcitations
- 2023In situ Imaging of Precipitate Formation in Additively Manufactured Al-Alloys by Scanning X-ray Fluorescencecitations
- 2020Effect of atomization on surface oxide composition in 316L stainless steel powders for additive manufacturingcitations
- 2020Full Densification in PM Steels Through Liquid Phase Sintering and HIP Approach
- 2018Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloycitations
- 2017Influence of friction models on FE simulation results of orthogonal cutting processcitations
- 2015Nitrogen uptake of nickel free austenitic stainless steel powder during heat treatment : an XPS study
- 2015Influence of the PM-processing route and nitrogen content on the properties of Ni-free austenitic stainless steel
- 2015Thermodynamic And Kinetic Aspects Of Oxide Transformation During Sintering Of Cr-Prealloyed Pm Steels
- 2014EFFICIENCY AND TEMPERATURE RANGES OF ACTIVITY OF DIFFERENT REDUCING AGENTS DURING SINTERING OF CR-PREALLOYED PM STEELS
- 2014Surface Oxides on Gas and Water Atomized Steel Powders
- 2014Microstructure Development in Powder Metallurgy Steels: Effect of Alloying Elements and Process Variables
- 2014Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects
- 2014Thermogravimetry Study of the Effectiveness of Different Reducing Agents during Sintering of Cr-prealloyed PM Steels
- 2014THERMODYNAMIC AND KINETIC ASPECTS OF OXIDE TRANSFORMATION DURING SINTERING OF CR-PREALLOYED PM STEELS
- 2014Effectiveness of reducing agents during sintering of Cr-prealloyed PM steels
- 2013Characteristics of Surface Oxides: Similarities and Differences between Gas and Water Atomized Steel Powders
- 2013Surface Oxides on Gas and Water Atomized Steel Powders
- 2013Effect of Processing Parameters on Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels
- 2013Effectiveness of Different Reducing Agents during Sintering of Cr-Prealloyed PM Steels
- 2013An experimental investigation of the influence of cutting-edge geometry on the machinability of compacted graphite ironcitations
- 2012Methodology for evaluating effects of material characteristics on machinability-theory and statistics-based modelling applied on Alloy 718citations
- 2012Influence of nitrogen atmosphere on reduction mechanisms of a high strength austenitic steel
- 2012Process Control System for Delubrication of PM Steels
- 2011Oxide Transformation during Sintering of Cr and Mn Prealloyed Water Atomized Steel Powder
- 2011Characterization of high-Mn-Cr austenitic steel powder Fe-19Mn-18Cr-C-N
- 2011CHANGES IN OXIDE CHEMISTRY DURING CONSOLIDATION OF Cr/Mn WATER ATOMIZED STEEL POWDER
- 2010Oxide Transformation During Sintering Of Prealloyed Water Atomized Steel Powder
Places of action
Organizations | Location | People |
---|
document
Surface Oxides on Gas and Water Atomized Steel Powders
Abstract
The amount of oxides, their composition and spatial distribution within a particle determine the usefulness and subsequent processing requirements of a powder. The present work summarizes possibilities of qualitative and quantitative analysis of powder surface chemistry by a variety of methods, starting from surface-sensitive chemical analyses by X-ray photoelectron spectroscopy (XPS), Auger spectroscopy, high-resolution scanning electron microscopy (HR SEM) coupled with energy dispersive X-ray analysis (EDX) and modern thermoanalytical techniques. Surface oxide state for a number of a water and gas atomised steel powders, alloyed with elements with high sensitivity to oxygen as Cr and Mn, is summarised. Dependence of surface products composition on the alloying elements content and atomisation method is described. In all cases powder particles are covered by heterogeneous oxide composed of particulate features of stable oxides (Cr-Mn-Si) and homogeneous iron surface oxide layer in between.