People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Longana, Marco Luigi
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024High Performance Ductile and Pseudo-ductile Polymer Matrix Compositescitations
- 2024Characterisation of Highly-Aligned, Discontinuous, Fibre Composites for Compressive Performance
- 2023Recycling end-of-life sails by carbon fibre reclamation and composite remanufacture using the HiPerDiF fibre alignment technologycitations
- 2023Recycling of carbon fibre reinforced polymer composites with superheated steam – A reviewcitations
- 2023Steering Potential for Printing Highly Aligned Discontinuous Fibre Composite Filamentcitations
- 2023Experimental and hydrodynamic methods to determine aqueous dispersion of discontinuous reclaimed carbon fibres
- 2022HIGHLY ALIGNED DISCONTINUOUS FIBRE COMPOSITE FILAMENTS FOR FUSED DEPOSITION MODELLING: OPEN-HOLE CASE STUDY
- 2022Developing aligned discontinuous flax fibre compositescitations
- 2021A life cycle engineering perspective on biocomposites as a solution for a sustainable recoverycitations
- 2020Remanufacturing of woven carbon fibre fabric production waste into high performance aligned discontinuous fibre compositescitations
- 2020Characterisation of natural fibres for sustainable discontinuous fibre composite materialscitations
- 2019Post-impact behaviour of pseudo-ductile thin-ply angle-ply hybrid compositescitations
- 2018Pseudo-ductility and reduced notch sensitivity in multi-directional all-carbon/epoxy thin-ply hybrid compositescitations
- 2018Reclaimed Carbon and Flax Fibre Compositescitations
- 2018Development and application of a quality control and property assurance methodology for reclaimed carbon fibres based on the HiPerDiF method and interlaminated hybrid specimenscitations
- 2018Development of a closed-loop recycling process for discontinuous carbon fibre polypropylene compositescitations
- 2017Aligned discontinuous intermingled reclaimed/virgin carbon fibre composites for high performance and pseudo-ductile behaviour in interlaminated carbon-glass hybridscitations
- 20173D PRINTED COMPOSITES – BENCHMARKING THE STATE-OF-THE-ART
- 2015Aligned short fibre composites with nonlinear behaviour
- 2015Aligned short fibre hybrid composites with virgin and recycled carbon fibres
- 2015Pseudo-ductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibrescitations
- 2012Identification of constitutive properties of composite materials under high strain rate loading using optical strain measurement techniques
- 2011Approaches to synchronise conventional measurements with optical techniques at high strain ratescitations
- 2010Application of optical measurement techniques to high strain rate deformations in composite materials
Places of action
Organizations | Location | People |
---|
conferencepaper
3D PRINTED COMPOSITES – BENCHMARKING THE STATE-OF-THE-ART
Abstract
Fused filament fabrication (FFF) is a 3D printing technique which allows layer-by-layer build-up of a part by the deposition of thermoplastic material through a nozzle. The technique allows for complex shapes to be made with a degree of design freedom unachievable with traditional manufacturing methods. However, the mechanical properties of the thermoplastic materials used are low compared to common engineering materials. In this work, improved 3D printing feedstocks for FFF, with carbon fibres embedded in a thermoplastic matrix to reinforce the material, are investigated. The state-of-the-art in composite 3D printing is reviewed and the capabilities of two different commercially available composite printing methods are assessed by print trials, optical microscopy and mechanical characterization of the printed materials. It is found that printing of continuous carbon fibres using the MarkOne gives significant increases in performance over unreinforced thermoplastics, with mechanical properties in the same order of magnitude of typical unidirectional epoxy matrix composites. The method, however, is limited in design freedom as the brittle continuous carbon fibres cannot be deposited freely through small steering radii and sharp angles. Filaments with embedded carbon microfibres (~100 μm) show better print capabilities and are suitable with standard printing methods, but only offer a slight increase in mechanical properties over the pure thermoplastic properties.