Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uusitalo, Mikko Arhippa

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Effect of Carbide Dissolution in the Metal Matrix of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings on the Initial Stage of Chlorine High Temperature Corrosioncitations

Places of action

Chart of shared publication
Matikainen, Ville
1 / 28 shared
Fantozzi, Davide
1 / 11 shared
Koivuluoto, Heli
1 / 58 shared
Vuoristo, Petri
1 / 75 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Matikainen, Ville
  • Fantozzi, Davide
  • Koivuluoto, Heli
  • Vuoristo, Petri
OrganizationsLocationPeople

document

Effect of Carbide Dissolution in the Metal Matrix of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings on the Initial Stage of Chlorine High Temperature Corrosion

  • Matikainen, Ville
  • Uusitalo, Mikko Arhippa
  • Fantozzi, Davide
  • Koivuluoto, Heli
  • Vuoristo, Petri
Abstract

Highly corrosion and wear resistant thermally sprayed chromium carbide (Cr3C2) based cermets coatings are nowadays a potential highly durable solution to allow traditional fluidised bed combustors (FBC) to be operated with ecological waste and biomass fuels. However, the heat input of thermal spraying processes causes carbide dissolution in the metal binder. This alters the coating structure and forms carbon saturated amorphous and nanocrystalline metastable areas, which can affect the behaviour of the materials under the corrosive chlorides containing environment of the flue gases. This study analyses the effect of carbide dissolution in the metal matrix of MMC coatings and its effect on the onset of chlorine induced high temperature corrosion. Four Cr3C2-NiCrMoNb coatings were thermally sprayed with high-velocity air-fuel (HVAF) and high-velocity oxygen-fuel (HVOF) spray processes in order to obtain microstructures with increasing amount of carbide dissolution in the metal matrix. The <br/>specimens were heat treated in an inert argon atmosphere at 700˚C for 5 hours to induce secondary carbide precipitation. As-sprayed and heat-treated self-standing coatings were covered with KCl and their corrosion resistance was investigated with thermogravimetric analysis (TGA) at 550˚C for 4 hours. High carbon dissolution in the metal matrix appeared to be a detrimental factor in the initial stage of corrosion. The microstructural changes induced by the heat treatment hindered the corrosion onset in the coatings. Moreover, an optimal amount of oxides <br/>and melting degree seemed beneficial.

Topics
  • microstructure
  • amorphous
  • Carbon
  • chromium
  • Oxygen
  • carbide
  • thermogravimetry
  • precipitation
  • metal-matrix composite
  • high temperature corrosion