People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Matikainen, Ville
Tampere University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2022Electrochemical Corrosion Characterization of Submicron WC-12Co Coatings Produced by CGS and HVAF Compared with Sintered Bulkscitations
- 2022Electrochemical Corrosion Characterization of Submicron WC-12Co Coatings Produced by CGS and HVAF Compared with Sintered Bulkscitations
- 2022Investigation of novel nano-carbide WC/CoCr coatings applied by HVAF
- 2020A study of Cr3C2-based HVOF- and HVAF-sprayed coatingscitations
- 2019Slurry and dry particle erosion wear properties of WC-10Co4Cr and Cr3C2-25NiCr hardmetal coatings deposited by HVOF and HVAF spray processescitations
- 2019Chlorine induced high-temperature corrosion mechanisms in HVOF and HVAF sprayed Cr3C2-based hardmetal coatingscitations
- 2018Tribology of FeVCrC coatings deposited by HVOF and HVAF thermal spray processescitations
- 2018High Speed Slurry-Pot Erosion Wear Testing of HVOF and HVAF Sprayed Hardmetal Coatings
- 2018Slurry and dry particle erosion wear properties of WC-10Co4Cr and Cr3C2-25NiCr hardmetal coatings deposited by HVOF and HVAF spray processes
- 2018Chlorine-Induced High Temperature Corrosion of Inconel 625 Sprayed Coatings Deposited with Different Thermal Spray Techniquescitations
- 2018Effect of Carbide Dissolution on Chlorine Induced High Temperature Corrosion of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatingscitations
- 2018Wear resistance of HVAF-sprayed hardmetal coatings
- 2017Effect of Nozzle Geometry on the Microstructure and Properties of HVAF Sprayed Hard Metal Coatings
- 2017Effect of Carbide Dissolution in the Metal Matrix of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings on the Initial Stage of Chlorine High Temperature Corrosion
- 2017Chlorine-Induced High Temperature Corrosion of Inconel 625 Sprayed Coatings Deposited with Different Thermal Spray Techniquescitations
- 2017A Study of Cr3C2-Based HVOF- and HVAF-Sprayed Coatingscitations
- 2017Cavitation erosion, slurry erosion and solid particle erosion performance of metal matrix composite (MMC) coatings sprayed with modern high velocity thermal spray processes
- 2017Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatingscitations
- 2016Electron Microscopic Characterization of Thermally-Sprayed Cr3C2-37WC-18-NiCoCrFe Coating
- 2016Microstructure and Sliding Wear Behavior of Fe-Based Coatings Manufactured with HVOF and HVAF Thermal Spray Processescitations
- 2016Corrosion Behavior of WC-FeCrAl Coatings Deposited by HVOF and HVAF Thermal Spraying Methods
- 2016Sliding and abrasive wear behaviour of HVOF- and HVAF-sprayed Cr3C2-NiCr hardmetal coatingscitations
- 2015Microstructural Characteristics Of Different Cr3C2 Coating Compositions Sprayed with HVAF Process
- 2015High Temperature 3-body Abrasive Wear of HVOF and HVAF Sprayed Cr3C2-NiCr Coatings
- 2015Advanced coatings by novel high-kinetic thermal spray processes
- 2015Corrosion Behavior of WC-Ni Coatings Deposited by Different Thermal Spraying Methods
- 2015Effect of spraying parameters on the microstructural and corrosion properties of HVAF-sprayed Fe-Cr-Ni-B-C coatingscitations
- 2015Tribology of HVOF- and HVAF-sprayed WC-10Co4Cr hardmetal coatingscitations
Places of action
Organizations | Location | People |
---|
document
Effect of Carbide Dissolution in the Metal Matrix of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings on the Initial Stage of Chlorine High Temperature Corrosion
Abstract
Highly corrosion and wear resistant thermally sprayed chromium carbide (Cr3C2) based cermets coatings are nowadays a potential highly durable solution to allow traditional fluidised bed combustors (FBC) to be operated with ecological waste and biomass fuels. However, the heat input of thermal spraying processes causes carbide dissolution in the metal binder. This alters the coating structure and forms carbon saturated amorphous and nanocrystalline metastable areas, which can affect the behaviour of the materials under the corrosive chlorides containing environment of the flue gases. This study analyses the effect of carbide dissolution in the metal matrix of MMC coatings and its effect on the onset of chlorine induced high temperature corrosion. Four Cr3C2-NiCrMoNb coatings were thermally sprayed with high-velocity air-fuel (HVAF) and high-velocity oxygen-fuel (HVOF) spray processes in order to obtain microstructures with increasing amount of carbide dissolution in the metal matrix. The <br/>specimens were heat treated in an inert argon atmosphere at 700˚C for 5 hours to induce secondary carbide precipitation. As-sprayed and heat-treated self-standing coatings were covered with KCl and their corrosion resistance was investigated with thermogravimetric analysis (TGA) at 550˚C for 4 hours. High carbon dissolution in the metal matrix appeared to be a detrimental factor in the initial stage of corrosion. The microstructural changes induced by the heat treatment hindered the corrosion onset in the coatings. Moreover, an optimal amount of oxides <br/>and melting degree seemed beneficial.