People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Chung-Che
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 2023Conformal CVD-grown MoS2 on three-dimensional woodpile photonic crystals for photonic bandgap engineeringcitations
- 2022Low energy switching of phase change materials using a 2D thermal boundary layercitations
- 2020Enhancement of nonlinear functionality of step-index silica fibers combining thermal poling and 2D materials depositioncitations
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Tuning MoS2 metamaterial with elastic strain
- 2019Tuning MoS 2 metamaterial with elastic strain
- 2018Optical-resonance-enhanced nonlinearities in a MoS2-coated single-mode fibercitations
- 2018Fabrication of micro-scale fracture specimens for nuclear applications by direct laser writing
- 2017Wafer scale pre-patterned ALD MoS 2 FETs
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Wafer scale pre-patterned ALD MoS2 FETs
- 2017Chemical vapor deposition and Van der Waals epitaxy for wafer-scale emerging 2D transition metal di-chalcogenides
- 2017A lift-off method for wafer scale hetero-structuring of 2D materials
- 2016Next generation chalcogenide glasses for visible and IR imaging
- 2016Advanced CVD technology for emerging transition metal di-chalcogenides
- 2015Fabrication of tin sulphide and emerging transition metal di-chalcogenides by CVD
- 2015CVD-grown tin sulphide for thin film solar cell devices
- 2014Manufacturing high purity chalcogenide glass
- 2013Crystallization study of the CuSbS2 chalcogenide material for solar applications
- 2012Laser-induced crystalline optical waveguide in glass fiber formatcitations
- 2011Novel methods for the preparation of high purity chalcogenide glass for optical fiber applications
- 2010Switching metamaterials with electronic signals and electron-beam excitations
- 2010Metamaterial electro-optic switch of nanoscale thicknesscitations
- 2010Chalcogenide glasses for photonics device applications
- 2010Chalcogenide plasmonic metamaterial switches
- 2010Active chalcogenide glass photonics and electro-optics for the mid-infrared
- 2009Chalcogenide glass metamaterial optical switch
- 2009Focused ion beam etched ring-resonator in CVD-grown Ge-Sb-S thin films
- 2007Antimony germanium sulphide amorphous thin films fabricated by chemical vapour depositioncitations
- 2007Electrical phase change of Ga:La:S:Cu filmscitations
- 2005Chalcogenide glass thin films and planar waveguidescitations
- 2004Deposition and characterization of germanium sulphide glass planar waveguidescitations
- 2003Properties and application of germanium sulphide glass
- 2003Through thick and thin: recent developments with chalcogenide films
Places of action
Organizations | Location | People |
---|
document
Wafer scale pre-patterned ALD MoS2 FETs
Abstract
Currently, 2D Transition metal dichalcogenides are emerging as the next generation semiconductor materials as they offer a direct bangap and therefore high on/off ratios, relatively high mobility, short-channel effects immunity, and near ideal subthreshold swings.<br/>In this work we present a simplified wafer scale processing of MoS2 transistors that alleviates lithography and etching issues. The first step of the process is to grow a 90 nm dry thermal oxide on 6 inch wafers. The wafers are then immersed in a HCl solution to ensure the hydrophilicity of the surface. Atomic layer deposition (ALD) is used to grow MoO3 on the wafer. For this we use the metal organic precursor Bis(tert-butylimido)bis(dimethylamido)Mo and Ozone at 250 C. The wafers are then patterned in a conventional lithography process using the positive tone resist S1813. After the resist development the wafers are rinsed in deionised water and washed thoroughly. This step not only removes the remaining developer but also etches away the exposed MoO3. The photoresist is then removed by Acetone and finally rinsed with IPA. The wafers are further cleaned and oxidised in an asher by O2 plasma.<br/>The patterned MoO3 wafers are then transferred in a furnace where they are annealed in H2S in two steps and at a low pressure. The first step is at substantially lower temperature than the melting point of MoO3 at 250C to eliminate vaporization of the material and for 1h whereas the second step is at 900C for 10 minutes to improve the crystallinity of the material. The pressure during the annealing is set at 4 Torr. After the H2S treatment the films are converted to MoS2 and since they are pre - patterned they are ready for metal deposition.<br/>For metal contacts we use sputtering of 5nm of Ti and 150 nm of Au on top. For the top gate dielectric we use 40nm ALD deposited HfO2 which is deposited at the entire wafer. After the deposition of the top dielectric we open metal window contacts to the metal pads of the transistors using traditional lithography and a 20:1 BHF solution. Finally, top metal gate is deposited by sputtering and patterned by lift-off.<br/>The novelty of this process lies within the pattern formation on MoO3 early in the process. This eliminates the issues involved with cross-linking of photoresist during MoS2 etching therefore simplifying and de-risking photoresist removal and reducing contamination. More importantly though as the patterns have already been formed before the high temperature conversion to MoS2 the layer stress has been released prior to the conversion. This results in higher quality films, free of pin holes, with fewer defects and of higher crystallinity, yielding superior electrical properties.<br/>Devices are currently at the electrical characterisation stage from which results will reveal the performance of the MoS2 FETs made by this method. Ultimate goal of this work is to create a robust wafer scale process with high quality transistors for biosensing applications.