People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Simonsen, Søren Bredmose
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Operando Electron Microscopy and Impedance Analysis of Solid Oxide Electrolysis and Fuel Cellscitations
- 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scatteringcitations
- 2022Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticlescitations
- 2021Development of high-temperature electrochemical TEM and its application on solid oxide electrolysis cells
- 2021Development of high-temperature electrochemical TEM and its application on solid oxide electrolysis cells
- 2021Co oxidation state at LSC-YSZ interface in model solid oxide electrochemical cellcitations
- 2020Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticlescitations
- 2019Electrospun nanofiber materials for energy and environmental applications citations
- 2019Silver Modified Cathodes for Solid Oxide Fuel Cellscitations
- 2019Silver Modified Cathodes for Solid Oxide Fuel Cellscitations
- 2019Electrospun nanofiber materials for energy and environmental applicationscitations
- 2019Structural Characterization of Membrane-Electrode-Assemblies in High Temperature Polymer Electrolyte Membrane Fuel Cellscitations
- 2019Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2019Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2018Solutions for catalysis: A surfactant-free synthesis of precious metal nanoparticle colloids in mono-alcohols for catalysts with enhanced performances
- 2016Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodescitations
- 2016Effects of strong cathodic polarization of the Ni-YSZ interfacecitations
- 2016Comparison of ultramicrotomy and focused-ion-beam for the preparation of TEM and STEM cross section of organic solar cellscitations
- 2016In-Situ Transmission Electron Microscopy on Operating Electrochemical Cells
- 2016Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric materialcitations
- 2016Nanocomposite YSZ-NiO Particles with Tailored Structure Synthesized in a Two-Stage Continuous Hydrothermal Flow Reactor
- 2016Synthesis of ligand-free CZTS nanoparticles via a facile hot injection routecitations
- 2015Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reductioncitations
- 2014NiO/YSZ Reduction for SOFC/SOEC Studied In Situ by Environmental Transmission Electron Microscopycitations
- 2011Sintering of oxide-supported Pt and Pd nanoparticles in air studied by in situ TEM
- 2011Atomic-scale non-contact AFM studies of alumina supported nanoparticles
Places of action
Organizations | Location | People |
---|
conferencepaper
In-Situ Transmission Electron Microscopy on Operating Electrochemical Cells
Abstract
Solid oxide cells (SOC) have the potential of playing a significant role in the future efficient energy systemscenario. In order to become widely commercially available, an improved performance and durability of the cellshas to be achieved [1]. Conventional scanning and transmission SEM and TEM have been often used for ex-situpost mortem characterization of SOFCs and SOECs [2,3]. However, in order to get fundamental insight of themicrostructural development of SOFC/SOEC during operation conditions in-situ studies are necessary [4]. Thedevelopment of advanced TEM chips and holders makes it possible to undertake analysis during exposure to theSOFC/SOEC sample of reactive gas flow, elevated temperatures and electrical biasing in combination. Thisallows the study of nanostructure development under temperature and electrode polarisation conditions similarto operation conditions.In this work, we have for the first time performed in-situ analysis of a symmetric cell inside a TEM underdifferent configurations. In order to be able to perform in-situ experiments while drawing a current through thesample, we used a homemade TEM chip [5,6] and an 80-300kV Titan ETEM (FEI Company) equipped with animage corrector and a differential pumping system.A symmetric cell was prepared by depositing a cell consisting of three thin films on a strontium titanate (STO)single crystal substrate by pulsed laser deposition (PLD). Lanthanum strontium cobaltite La0.6Sr0.4CoO3-δ (LSC)was chosen as electrode and yttria stabilized zirconia ZrO2: 8% mol Y2O3 (YSZ) as electrolyte, see figure 1. Highresolution TEM analysis on PLD samples after the deposition, did not reveal any second phase formation at theinterface between YSZ and LSC. The in-situ experiment was firstly conducted in vacuum at temperature between25 oC and 900 oC. Secondly, it was repeated in presence of oxygen with an oxygen partial pressure of about 2mbar and a maximum temperature of 750 oC. Subsequently, the symmetric cell will be exposed to oxygen at 600 oC and 1 V overpotential within the ETEM. In order to do that, a symmetric cell has been placed on the chip withthe use of a focus ion beam (FIB) microscope, see figure 2. To do so, a lamella was first extracted by the bulksample and attached to a conventional TEM grid. Afterwards, the grid was tilted by 90 degrees and the lamellawas detached once again and placed on the chip.STEM-EDS investigation was used for ex-situ post mortem analysis. Finally, a bulk symmetric cell, coming fromthe same batch as the in-situ treated TEM samples, was tested in a furnace with similar environmentalconditions. This comparison is vital for distinguishing possible surface diffusion effects caused by having a thinlamella for in-situ TEM analysis. Electrochemical properties were also investigated by electrochemicalimpedance spectroscopy (EIS).In the figure 3 the cell was heat treated at 400 oC in vacuum, whereas in figure 4, the cell was treated at thesame temperature but in presence of oxygen, with PO2 of 2 mbar. Comparing the two figures, the cell exposed tooxygen showed structural changes in the LSC thin film in comparison with the sample heated in vacuum. Thesechanges refer to the formation of grains as is confirmed by electron diffraction patterns.