Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Deacon, G. B.

  • Google
  • 3
  • 10
  • 66

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2007Structural versatility in hydrated rare earth(III) 1,2-benzenedisulfonates24citations
  • 2004Reactions of lanthanoid metals with 3,5-diphenylpyrazole at elevated temperatures: synthesis and structures of both homoleptic, [Ln3(Ph2pz)9] (Ln = La, Nd), [Ln2(Ph2pz)6] (Ln = Er, Lu), and heteroleptic, [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er or Yb), pyrazolate complexescitations
  • 2003Cerium acetylacetonates—new aspects, including the lamellar clathrate [Ce(acac)4]·10H2O42citations

Places of action

Chart of shared publication
Skelton, Brian
3 / 66 shared
Junk, P. C.
1 / 6 shared
Harika, R.
1 / 1 shared
White, Allan
3 / 54 shared
Gitlits, A.
1 / 1 shared
Forsyth, C. M.
2 / 2 shared
Bond, A. M.
1 / 1 shared
Behrsing, T.
1 / 1 shared
Kamble, K. J.
1 / 1 shared
Forsyth, M.
1 / 8 shared
Chart of publication period
2007
2004
2003

Co-Authors (by relevance)

  • Skelton, Brian
  • Junk, P. C.
  • Harika, R.
  • White, Allan
  • Gitlits, A.
  • Forsyth, C. M.
  • Bond, A. M.
  • Behrsing, T.
  • Kamble, K. J.
  • Forsyth, M.
OrganizationsLocationPeople

article

Reactions of lanthanoid metals with 3,5-diphenylpyrazole at elevated temperatures: synthesis and structures of both homoleptic, [Ln3(Ph2pz)9] (Ln = La, Nd), [Ln2(Ph2pz)6] (Ln = Er, Lu), and heteroleptic, [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er or Yb), pyrazolate complexes

  • Gitlits, A.
  • Deacon, G. B.
  • Forsyth, C. M.
  • Skelton, Brian
  • White, Allan
Abstract

The direct reaction of lanthanoid metals with 3,5-diphenylpyrazole (Ph2pzH) at 300 °C under vacuum in the presence of mercury gives the structurally characterized [Ln3(Ph2pz)9] (Ln = La or Nd), [Ln2(Ph2pz)6] (Ln = Er or Lu). Similar reactions provided heteroleptic [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er and Y). The last was obtained only from impure Ph2pzH, but was subsequently prepared by treatment of [Yb(Ph2pz)3(thf)2] with Ph2pzH. Reactions of Yb with Ph2pzH at 200 °C gave a poorly soluble divalent species which was converted by 1,2-dimethoxyethane into [Yb(Ph2pz)2(dme)2]. Single crystal X-ray structures established a bowed trinuclear pyrazolate-bridged structure for [Ln3(Ph2pz)9] (Ln = La or Nd), LnLnLn being 135.94(1)° (La) and 137.41(1)° (Nd). There are two η2-Ph2pz ligands on the terminal Ln atoms and one on the central metal with adjacent Ln atoms linked by one μ-η2:η2 and one μ-η5 (to terminal Ln):η2 pyrazolate group. Thus the terminal Ln atoms are formally nine-coordinate and the central Ln, ten-coordinate. By contrast, [Ln2(Ph2pz)6] (Ln = Er or Lu) complexes are dimeric with two terminal (η2) and two bridging (μ-η2:η2) pyrazolates and eight-coordinate lanthanoids. All six heteroleptic complexes [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er or Yb) are isomorphous with three equatorial η2-Ph2pz groups, transoid (N–Ln–N 158.18(6)–161.43(9)°) η1-pyrazole ligands, and eight-coordinate Ln throughout.

Topics
  • single crystal
  • Mercury