People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holtappels, Peter
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2022Electrochemical Study of Symmetrical Intermediate Temperature - Solid Oxide Fuel Cells based on La 0.6 Sr 0.4 MnO 3 / Ce 0.9 Gd 0.1 O 1.95 for Operation in Direct Methane / Aircitations
- 2022Electrochemical Study of Symmetrical Intermediate Temperature - Solid Oxide Fuel Cells based on La0.6Sr0.4MnO3 / Ce0.9Gd0.1O1.95 for Operation in Direct Methane / Aircitations
- 2021Synthesis and electrochemical characterization of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3–δ / Ce 0.9 Gd 0.1 O 1.95 co-electrospun nanofiber cathodes for intermediate-temperature solid oxide fuel cellscitations
- 2021Synthesis and electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3–δ / Ce0.9Gd0.1O1.95 co-electrospun nanofiber cathodes for intermediate-temperature solid oxide fuel cellscitations
- 2021Synthesis, characterization, fabrication, and electrochemical performance of transition metal doped LSCTA- as anode candidates for SOFCScitations
- 2019Combining Transition Metals – An Approach towards High-Performing Coking Tolerant Solid Oxide Fuel Cell Anodescitations
- 2019Silver Modified Cathodes for Solid Oxide Fuel Cellscitations
- 2019Silver Modified Cathodes for Solid Oxide Fuel Cellscitations
- 2019Testing Novel Nickel and Cobalt Infiltrated STN Anodes for Carbon Tolerance using In Situ Raman Spectroscopy and Electrochemical Impedance Spectroscopy in Fuel Cellscitations
- 2018Novel Processing of Cathodes for Solid Oxide Fuel Cells
- 2018Novel Processing of Cathodes for Solid Oxide Fuel Cells
- 2018Scaling up aqueous processing of A-site deficient strontium titanate for SOFC anode supportscitations
- 2017Development of redox stable, multifunctional substrates for anode supported SOFCS
- 2017Novel materials for more robust solid oxide fuel cells in small scale applications
- 2015Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin filmscitations
- 2015In Situ Studies of Fe4+ Stability in β-Li3Fe2(PO4)3 Cathodes for Li Ion Batteriescitations
- 2015Need for In Operando Characterization of Electrochemical Interface Features
- 2014Composite Fe - BaCe0.2Zr0.6Y0.2O2.9 Anodes for Proton Conductor Fuel Cellscitations
- 2014Composite Fe - BaCe 0.2 Zr 0.6 Y 0.2 O 2.9 Anodes for Proton Conductor Fuel Cellscitations
- 2013Pressurized HxCyOz Cells at ca. 250 °C: Potential and Challenges
- 2013Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCscitations
- 2013Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCscitations
- 2013Ni-Based Solid Oxide Cell Electrodescitations
- 2013Pressurized H x C y O z Cells at ca. 250 °C: Potential and Challenges
- 2012Fundamental Material Properties Underlying Solid Oxide Electrochemistry
- 2010On the synthesis and performance of flame-made nanoscale La 0.6 Sr 0.4 CoO 3-δ and its influence on the application as an intermediate temperature solid oxide fuel cell cathodecitations
- 2010On the synthesis and performance of flame-made nanoscale La0.6Sr0.4CoO3−δ and its influence on the application as an intermediate temperature solid oxide fuel cell cathodecitations
- 2009Pre-edges in oxygen (1 s ) x-ray absorption spectra: a spectral indicator for electron hole depletion and transport blocking in iron perovskitescitations
Places of action
Organizations | Location | People |
---|
document
Development of redox stable, multifunctional substrates for anode supported SOFCS
Abstract
Redox stable solid oxide fuel cells are beneficial in many aspects such as tolerance against system failures e.g fuel cut off and emergency shut down, but also allow for higher fuel utilization, which increases efficiency. State-ofthe-art Ni-cermet based anodes suffer from microstructural changes upon redox cycling, while other properties such as catalytic activity for methane reforming and/or water gas shift, thermal conductivity in addition to electronic conductivity for current pickup are highly wanted for SOFC applications.<br/>In order to combine the advantages of a redox stable anode with a multifunctional anode support, the development of a two layer fuel electrode based on a redox stable strontium titanate layer for the electrochemically active layer and a redox stable Ni-YSZ support was pursued. Half-cells with well adhearing strontium titante anode layers on stateof-the-art Ni-YSZ cermet supports have been achieved. Redox tolerance of the half-cell depends could be increased by optimizing the redox stability of the cermet support.