People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bjørnetun Haugen, Astri
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Temperature-Dependent Ferroelectric Properties and Aging Behavior of Freeze-Cast Bismuth Ferrite-Barium Titanate Ceramicscitations
- 2023Interfacial Engineering of PVDF-TrFE toward Higher Piezoelectric, Ferroelectric, and Dielectric Performance for Sensing and Energy Harvesting Applicationscitations
- 2023Humidity resistance and recovery of sintered sodium potassium niobate-based piezoelectricscitations
- 2022Freeform injection molding of functional ceramics by hybrid additive manufacturingcitations
- 2022Piezoelectric properties of mechanochemically processed 0.67BiFeO3-0.33BaTiO3 ceramicscitations
- 2021Textured, lead-free piezoelectric ceramics with high figure of merit for energy harvestingcitations
- 2021Low-temperature synthesis of bismuth titanate by modified citrate amorphous methodcitations
- 2019Hybrid atmosphere processing of lead-free piezoelectric sodium potassium niobate-based ceramicscitations
- 2018Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranescitations
- 2018Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranescitations
- 2018Deposition of highly oriented (K,Na)NbO 3 films on flexible metal substratescitations
- 2018Deposition of highly oriented (K,Na)NbO3 films on flexible metal substratescitations
- 2017Oxygen transport properties of tubular Ce 0.9 Gd 0.1 O 1.95 -La 0.6 Sr 0.4 FeO 3−d composite asymmetric oxygen permeation membranes supported on magnesium oxidecitations
- 2017Ceramic processing of tubular, multilayered oxygen transport membranes (Invited)
- 2017Oxygen transport properties of tubular Ce0.9Gd0.1O1.95-La0.6Sr0.4FeO3−d composite asymmetric oxygen permeation membranes supported on magnesium oxidecitations
- 2016Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supportscitations
- 2016Processing and characterization of multilayers for energy device fabrication (invited)
- 2015Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes
- 2015Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes
Places of action
Organizations | Location | People |
---|
conferencepaper
Processing and characterization of multilayers for energy device fabrication (invited)
Abstract
The performance of asymmetric multilayer structures in solid oxide fuel cells (SOFC)/solid oxide electrolysis cells (SOEC), tubular oxygen transport membranes (OTM) and similar high temperature energy devices is often determined by the ceramic fabrication (for given materials and design). A good understanding and control of different processing steps (from powder/materials selection, through shaping and sintering) is of crucial importance to achieve a defect-free multilayer microstructure with the desired properties and performance. Based on the experiences at DTU Energy with the fabrication of planar SOFC and tubular OTM, we present selected challenges in ceramic processing such asymmetric multilayer structures. By optimizing different steps in the ceramic processing, we improved the mechanical properties and gas permeability of porous supports and the (electrochemical) performance of electrodes/catalytic layers. Optical dilatometry has proven to be a powerful and fast tool to optimize the co-sintering of planar, asymmetric multilayers, consisting of a porous support and a dense membrane layer. The monitoring of dimensional changes and distortions in single and multilayers during de-binding and sintering allows the minimization of sintering stresses, thereby avoiding the formation of defects, such as camber, delamination or crack formation. We briefly highlight recent activities at DTU Energy with advanced processing techniques, such as using electrospinning and 3D printing in fabrication of multilayers.