Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krogstrup, Peter

  • Google
  • 17
  • 101
  • 1701

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2023Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires15citations
  • 2023Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires15citations
  • 2022Tuning lower dimensional superconductivity with hybridization at a superconducting-semiconducting interface7citations
  • 2022Doubling the mobility of InAs/InGaAs selective area grown nanowires12citations
  • 2021Band Structure Extraction at Hybrid Narrow-Gap Semiconductor-Metal Interfaces29citations
  • 2021Andreev Modes from Phase Winding in a Full-Shell Nanowire-Based Transmon14citations
  • 2021Magnetic-Field-Compatible Superconducting Transmon Qubit26citations
  • 2020Anomalous metallic phase in tunable destructive superconductors31citations
  • 2020Destructive Little-Parks Effect in a Full-Shell Nanowire-Based Transmon32citations
  • 2020Coherent Epitaxial Semiconductor-Ferromagnetic Insulator InAs/EuS Interfaces29citations
  • 2020Coherent Epitaxial Semiconductor–Ferromagnetic Insulator InAs/EuS Interfaces: Band Alignment and Magnetic Structure29citations
  • 2018Field effect enhancement in buffered quantum nanowire networks86citations
  • 2016Ag-catalyzed InAs nanowires grown on transferable graphite flakes15citations
  • 2016Majorana bound states in a coupled quantum-dot hybrid-nanowire system972citations
  • 2015Hard gap in epitaxial semiconductor-superconductor nanowires383citations
  • 2013Low temperature transport in p-doped InAs nanowires6citations
  • 2012Dynamical theory and experiments on GaAs nanowire growth for photovoltaic applicationscitations

Places of action

Chart of shared publication
Arbiol, Jordi
4 / 57 shared
Carrad, Damon James
3 / 5 shared
Jespersen, Thomas Sand
4 / 11 shared
Khan, Sabbir A.
5 / 7 shared
Spadaro, Maria Chiara
3 / 24 shared
Liu, Yu
5 / 41 shared
Olsteins, Dags
2 / 2 shared
Martí-Sánchez, Sara
2 / 7 shared
Quiñones, Judith
1 / 1 shared
Lampadaris, Charalampos
2 / 2 shared
Martã-Sãnchez, Sara
2 / 11 shared
Jordi, Arbiol I. Cobos
2 / 43 shared
Quiãones, Judith
1 / 1 shared
Sand Jespersen, Thomas
1 / 2 shared
Katsnelson, Mikhail
1 / 1 shared
Kamlapure, Anand
1 / 2 shared
Roesner, Malte
1 / 1 shared
Khajetoorians, Alexander Ako
1 / 1 shared
Steinbrecher, Manuel
1 / 3 shared
Sierda, Emil
1 / 1 shared
Knol, Elze J.
1 / 1 shared
Simonato, Manuel
1 / 1 shared
Kamber, Umut
1 / 2 shared
Bergamaschini, Roberto
1 / 18 shared
Marti-Sanchez, Sara
2 / 4 shared
Rajpalke, Mohana
1 / 2 shared
Tanta, Rawa
1 / 2 shared
Petersen, Christian Emanuel N.
1 / 1 shared
Beznasiuk, Daria
1 / 1 shared
Kang, Jung-Hyun
1 / 1 shared
Christensen, Anna Wulff
1 / 1 shared
Stankevic, Tomas
2 / 6 shared
Maka, Nikhil N.
1 / 1 shared
Gardner, Geoffrey C.
1 / 2 shared
Gukelberger, Jan
1 / 1 shared
Schroter, Niels B. M.
1 / 1 shared
Troyer, Matthias
1 / 1 shared
Schuwalow, Sergej
3 / 4 shared
Caputo, Marco
1 / 8 shared
Aeppli, Gabriel
3 / 6 shared
Manfra, Michael J.
1 / 2 shared
Krieger, Jonas
1 / 2 shared
Strocov, Vladimir
1 / 2 shared
Gamble, John
1 / 1 shared
Chikina, Alla
1 / 10 shared
Thomas, Candice
1 / 3 shared
Heck, B. Van
1 / 1 shared
Winkler, G. W.
1 / 1 shared
Sabonis, Deividas
2 / 2 shared
Kringhøj, Anders
3 / 3 shared
Erlandsson, Oscar
3 / 3 shared
Petersson, Karl
3 / 3 shared
Casparis, Lucas
2 / 2 shared
Hesselberg, M.
1 / 1 shared
Kroll, J. G.
1 / 1 shared
Mcneil, R. P. G.
1 / 1 shared
Uilhoorn, W.
1 / 2 shared
Vaitiekėnas, Saulius
2 / 3 shared
Petkovic, Ivana
1 / 1 shared
Heck, Bernard Van
1 / 1 shared
Staub, Urs
2 / 4 shared
Stahn, Jochen
2 / 10 shared
Koch, Christian
2 / 8 shared
Luchini, Alessandra
2 / 4 shared
Francoual, Sonia
2 / 12 shared
Mardegan, Jose R. L.
2 / 3 shared
Lefmann, Kim
2 / 12 shared
Vaz, Carlos A. F.
2 / 6 shared
Ramakrishnan, Mahesh
2 / 2 shared
Krieger, Jonas A.
2 / 3 shared
Strocov, Vladimir N.
2 / 13 shared
Stankevič, Tomaš
1 / 1 shared
Marcus, Charles M.
1 / 4 shared
Vaitiekenas, Saulius
1 / 1 shared
Aseev, Pavel
1 / 1 shared
Fursina, Alexandra
1 / 3 shared
Stankeviä, Tomas
1 / 1 shared
Koops, Renã
1 / 1 shared
Krizek, Filip
1 / 8 shared
Boekhout, Frenk
1 / 1 shared
Whiticar, A. M.
1 / 2 shared
Uccelli, Emanuele
1 / 1 shared
Kouwenhoven, Leo P.
1 / 17 shared
Sestoft, Joachim E.
2 / 2 shared
Meyer-Holdt, Jakob
1 / 1 shared
Johnson, Erik
1 / 14 shared
Zeng, Lunjie
1 / 3 shared
Olsson, Eva
1 / 12 shared
Gejl, Aske Nørskov
1 / 1 shared
Nygaard, Jesper
1 / 2 shared
Kanne, Thomas
1 / 3 shared
Leijnse, M.
1 / 5 shared
Nygård, Jesper
3 / 7 shared
Flensberg, Karsten
1 / 4 shared
Danon, Jeroen
1 / 4 shared
Hansen, Esben Bork
1 / 1 shared
Kuemmeth, Ferdinand
1 / 2 shared
Chang, W.
1 / 3 shared
Albrecht, S. M.
1 / 2 shared
Upadhyay, Shivendra
1 / 1 shared
Madsen, Morten Hannibal
1 / 2 shared
Chart of publication period
2023
2022
2021
2020
2018
2016
2015
2013
2012

Co-Authors (by relevance)

  • Arbiol, Jordi
  • Carrad, Damon James
  • Jespersen, Thomas Sand
  • Khan, Sabbir A.
  • Spadaro, Maria Chiara
  • Liu, Yu
  • Olsteins, Dags
  • Martí-Sánchez, Sara
  • Quiñones, Judith
  • Lampadaris, Charalampos
  • Martã-Sãnchez, Sara
  • Jordi, Arbiol I. Cobos
  • Quiãones, Judith
  • Sand Jespersen, Thomas
  • Katsnelson, Mikhail
  • Kamlapure, Anand
  • Roesner, Malte
  • Khajetoorians, Alexander Ako
  • Steinbrecher, Manuel
  • Sierda, Emil
  • Knol, Elze J.
  • Simonato, Manuel
  • Kamber, Umut
  • Bergamaschini, Roberto
  • Marti-Sanchez, Sara
  • Rajpalke, Mohana
  • Tanta, Rawa
  • Petersen, Christian Emanuel N.
  • Beznasiuk, Daria
  • Kang, Jung-Hyun
  • Christensen, Anna Wulff
  • Stankevic, Tomas
  • Maka, Nikhil N.
  • Gardner, Geoffrey C.
  • Gukelberger, Jan
  • Schroter, Niels B. M.
  • Troyer, Matthias
  • Schuwalow, Sergej
  • Caputo, Marco
  • Aeppli, Gabriel
  • Manfra, Michael J.
  • Krieger, Jonas
  • Strocov, Vladimir
  • Gamble, John
  • Chikina, Alla
  • Thomas, Candice
  • Heck, B. Van
  • Winkler, G. W.
  • Sabonis, Deividas
  • Kringhøj, Anders
  • Erlandsson, Oscar
  • Petersson, Karl
  • Casparis, Lucas
  • Hesselberg, M.
  • Kroll, J. G.
  • Mcneil, R. P. G.
  • Uilhoorn, W.
  • Vaitiekėnas, Saulius
  • Petkovic, Ivana
  • Heck, Bernard Van
  • Staub, Urs
  • Stahn, Jochen
  • Koch, Christian
  • Luchini, Alessandra
  • Francoual, Sonia
  • Mardegan, Jose R. L.
  • Lefmann, Kim
  • Vaz, Carlos A. F.
  • Ramakrishnan, Mahesh
  • Krieger, Jonas A.
  • Strocov, Vladimir N.
  • Stankevič, Tomaš
  • Marcus, Charles M.
  • Vaitiekenas, Saulius
  • Aseev, Pavel
  • Fursina, Alexandra
  • Stankeviä, Tomas
  • Koops, Renã
  • Krizek, Filip
  • Boekhout, Frenk
  • Whiticar, A. M.
  • Uccelli, Emanuele
  • Kouwenhoven, Leo P.
  • Sestoft, Joachim E.
  • Meyer-Holdt, Jakob
  • Johnson, Erik
  • Zeng, Lunjie
  • Olsson, Eva
  • Gejl, Aske Nørskov
  • Nygaard, Jesper
  • Kanne, Thomas
  • Leijnse, M.
  • Nygård, Jesper
  • Flensberg, Karsten
  • Danon, Jeroen
  • Hansen, Esben Bork
  • Kuemmeth, Ferdinand
  • Chang, W.
  • Albrecht, S. M.
  • Upadhyay, Shivendra
  • Madsen, Morten Hannibal
OrganizationsLocationPeople

thesis

Dynamical theory and experiments on GaAs nanowire growth for photovoltaic applications

  • Krogstrup, Peter
Abstract

The geometry of nanowire solar cells provides many potential advantages compared to planar solar cells, such as reduced reflection, built-in light concentration due to absorption resonances, improved band gap tuning for multi-junction devices and an increased defect tolerance. Moreover, the use of nanowires reduces the quantity of material necessary to approach the limits of light to electric power conversion efficiency, allowing for substantial cost reductions if they are grown on a cheap substrate. However, it is far from straightforward to achieve optimum design of bottom up grown nanowire solar cells, as it requires control and an in-depth understanding of complex growth kinetics controlling the nanowire crystal formation and dopant incorporation.<br/> <br/>This thesis is concerned with the growth of self catalyzed GaAs based semiconductor nanowires on silicon substrates in a molecular beam epitaxy system, with the aim of growing nanowires for highly efficient photovoltaic applications. As it is crucial to control and understand the mechanisms behind the nanowire crystal formation, not only in terms of the overall nanowire morphology but also in terms of the crystal phase purity, this thesis begins with a formulation of a theoretical framework which can serve as a basis to model and understand the dynamics of III-V nanowire growth via the ‘vapor-liquid-solid’ method. The formalism is based on principles from transition state kinetics driven by a Gibbs free energy minimization process. The crystallization process is described in terms of a dynamic liquid-solid growth system which continuously seeks to lower the excess Gibbs free energy originating from the adatoms and gas states. Nucleation statistics and the nucleation limited growth at the topfacet which force the solid-liquid growth system far from equilibrium are discussed in detail. Self-catalyzed GaAs nanowire growth which will be the main focus for the photovoltaic applications is used as a model system, and examples of in depth dynamical simulations compared with experiments are shown. The work gradually involves more detailed growth experiments such as in-situ x-ray characterization of growing nanowires and growth of advanced photovoltaic structures and finally photovoltaic characterization of both lying and standing single nanowire devices are presented. All the different kind of single NW solar cell devices show an enormous potential as light absorbers. Especially the single vertical NW solar cells which are characterized as grown on the substrate shows an apparent solar cell efficiency ofand a photo generated current which is much higher than previous reported on single NW solar cells.<br/>

Topics
  • impedance spectroscopy
  • morphology
  • phase
  • theory
  • experiment
  • simulation
  • semiconductor
  • Silicon
  • defect
  • crystallization
  • power conversion efficiency