Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Al-Safy, Rawaa

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Thermo-mechanical characterization of VGCF-modified adhesive for bond between CFRP and concrete subjected to combined effect of temperature and humiditycitations

Places of action

Chart of shared publication
Al-Mahaidi, Riadh
1 / 8 shared
Habsuda, Jana
1 / 3 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Al-Mahaidi, Riadh
  • Habsuda, Jana
OrganizationsLocationPeople

document

Thermo-mechanical characterization of VGCF-modified adhesive for bond between CFRP and concrete subjected to combined effect of temperature and humidity

  • Al-Mahaidi, Riadh
  • Al-Safy, Rawaa
  • Habsuda, Jana
Abstract

<p>Adhesives are employed in external strengthening of bond concrete structures by CFRP composite elements. Carbon-based composites are currently the most common type used to increase the strength of concrete members. The application of CF fabric to concrete members involves the use of a compatible bonding agent, and it is the modification of such bonding agents that is investigated in this paper. The investigation involves examining the effects of adding different concentrations of vapour-grown carbon nanofibres (VGCF) (0.5 wt%, 1 wt%, 1.5 wt% and 2 wt%) on the thermal and mechanical properties of the bonding agent. The effect of modification on the glass transition temperature and heat flow of the modified adhesive was explored using DSC technique. It was found that T<sub>g</sub> reduces slightly or remains the same with the addition of VGCF to Part A of the adhesive and the highest reduction in T<sub>g</sub> was found when Part A was reinforced with 2 wt % VGCF. Agglomaration of the fibres was observed when VGCF was introduced into MBrace® Saturant epoxy adhesive using the speed mixer and a random orientation for the fibres was noted within the epoxy matrix. Peeling-off of CF fabric was the common failure mode as the loaded CFRP/concrete system was subjected to the combined effect of temperature and humidity after short periods of exposure to such severe conditions.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • glass
  • glass
  • strength
  • composite
  • glass transition temperature
  • differential scanning calorimetry
  • random