Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shannon, Benjamin

  • Google
  • 6
  • 4
  • 90

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2018New laboratory test facility developed to investigate the leak-before-break window of large-diameter cast iron water pipes6citations
  • 2017Introduction of the leak-before-break (LBB) concept for cast iron water pipes on the basis of laboratory experiments28citations
  • 2017Classification of major cohorts of Australian pressurised cast iron water mains for pipe renewal15citations
  • 2017Experimental evaluation of bursting capacity of corroded grey cast iron water pipeline14citations
  • 2017Numerical interpretation of pressurized corroded cast iron pipe tests27citations
  • 2016Lessons learnt on pipe failure mechanisms from observation of exhumed cast iron pipescitations

Places of action

Chart of shared publication
Jiang, Rui
2 / 2 shared
Zhao, Xiao Ling
1 / 14 shared
Deo, Ravin N.
1 / 1 shared
Robert, Dilan
1 / 2 shared
Chart of publication period
2018
2017
2016

Co-Authors (by relevance)

  • Jiang, Rui
  • Zhao, Xiao Ling
  • Deo, Ravin N.
  • Robert, Dilan
OrganizationsLocationPeople

document

Lessons learnt on pipe failure mechanisms from observation of exhumed cast iron pipes

  • Shannon, Benjamin
Abstract

Underground water distribution pipe failures occur commonly across Australia. External loads, internal loads and corrosion are the main contributers to cast iron pipe failures. Pipe replacement after failure is conducted as fast as possible and failure mechanisms are only briefly documented. The extent of corrosion in exhumed cast iron pipes were collated. Pipes failures which did not lead to a major burst (leaks and no pipe failure) were examined. Some examples of non-failed cast iron pipe sections were analysed using stress analysis and approximate pipe material input data. In conclusion, irrespective of the depth of corrosion, the patch/pit sizes under 40 mm in diameter examined were unlikely to cause failure in all cast iron pipes tested.

Topics
  • impedance spectroscopy
  • corrosion
  • iron
  • cast iron