Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumari, Nivashri

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011High temperature resistance properties of NBR based polymer nanocompositescitations

Places of action

Chart of shared publication
Pazhanisamy, P.
1 / 1 shared
Jeyanthi, P.
1 / 1 shared
Chakraborty, S. K.
1 / 1 shared
Thavamani, P.
1 / 1 shared
Rajkumar, K.
1 / 5 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Pazhanisamy, P.
  • Jeyanthi, P.
  • Chakraborty, S. K.
  • Thavamani, P.
  • Rajkumar, K.
OrganizationsLocationPeople

article

High temperature resistance properties of NBR based polymer nanocomposites

  • Pazhanisamy, P.
  • Jeyanthi, P.
  • Chakraborty, S. K.
  • Thavamani, P.
  • Kumari, Nivashri
  • Rajkumar, K.
Abstract

<p>The high temperature resistant Polymer-nanographite composite was prepared using Nanographite as reinforcing fillers in Acrylonitrile Butadiene Rubber (NBR) and investigated. The effect of increasing nanographite loadings on mechanical properties like tensile strength, modulus and Elongation at break was studied. Mechanical tests demonstrate that the NBR/graphite nanocomposites possess greatly increased elastic modulus and tensile strength, and desirably strong interfaces. The NBR nanocomposites showed higher thermal stability in comparison unfilled rubber vulcanizate. Physico-mechanical properties of the polymer nanocomposites after air ageing studies at 200°C showed improved thermal resistance and increases with loading of nanographite. The dispersion of the nanographite filler in the Nitrile Rubber was achieved using liquid NBR polymer matrix and was investigated by SAXD, SEM and Mechanical properties. SAXD study indicated that the composites did not change the inter-gallery distance (d-spacing) of the graphite platelets and as the loading of nano filler increases the dispersion of nanoparticles improved due to filling effect.</p>

Topics
  • nanoparticle
  • nanocomposite
  • dispersion
  • scanning electron microscopy
  • strength
  • aging
  • tensile strength
  • rubber
  • nitrile