Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Williams, Lk

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Identifying an optimum ω3:ω6 dietary content to improve bone health for laying hens with minimal detrimental impacts on production endpointscitations

Places of action

Chart of shared publication
Toscano, Mj
1 / 1 shared
Booth, F.
1 / 1 shared
Tarlton, John
1 / 4 shared
Cogan, Ta
1 / 1 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Toscano, Mj
  • Booth, F.
  • Tarlton, John
  • Cogan, Ta
OrganizationsLocationPeople

article

Identifying an optimum ω3:ω6 dietary content to improve bone health for laying hens with minimal detrimental impacts on production endpoints

  • Toscano, Mj
  • Booth, F.
  • Tarlton, John
  • Cogan, Ta
  • Williams, Lk
Abstract

Introduction Keel fractures in laying hens is a serious welfare issue with up to 70% of birds within a flock having fractures.Their occurrence is likely owed to a combination of factors, including poor calcium retention and housing system.Our group has been researching using ω3-enhanced diets as a means to improve bone strength and reduce fractures following preliminary experiments indicating short chain ω3-based diets reduced fractures by 30-50% in commercial settings.Despite this finding, more recent work using a mixture of long and short chain ω3 content failed to deliver similar benefits to bone health and fracture level while increasing production losses. The current study was undertaken to identify whether reduced long chain content could yield benefits to bone health while minimizing negative impacts on production.Materials and Methods Thirty two Lohman Brown poultry layers were delivered to the University of Bristol, Langford Campus at approximately 23 weeks of age hereafter referred to as wk 0.Birds were randomly placed into one of eight pens across two rooms (4 birds/pen, 4 pens/room) and each pen provided ad-libitum access to one of four diets ranging in an ω3:ω6 of 0.12 to 1.35. Birds remained there until wk 12 whereupon they were killed by cervical dislocation, dissected with the keel, humeri, tibia, and caecal contents removed, which were then frozen at -80˚C until analysis.At weekly intervals, records were made of hen daily average, feed consumption, shell quality, and three normal eggs collected for assessment of shell width and biomechanic testing of two shell sections. At wk 7, a single egg from each pen (2 eggs/treatment) was collected for fatty acid analysis. Dissected tibia and humeri were used for quantification of bone mineral density and content using dual energy X-ray absorptiometry followed by biomechanic testing. To assess presence of keel fractures, birds were palpated upon arrival and again at wk 8 to assess the presence of keel fractures (Wilkins, et al. 2004) .At dissection, removed keels were visually assessed for fractures and then frozen until biomechanic testing.Lastly, to identify whether diet had an impact on the natural presence of campylobacterinfection rate in tissues, the presence and numbers of Campylobacter in the caecum and liver was established by direct plating of serial dilutions on mCCDA from samples collected during post-mortem. Data was statistically analyzed with MlwiN. The various responses were modelled as continuous variables with the exception of the presence of fractures which was modelled as a binary response. ω3:ω6 ration, week, and their interactions were included as continuous prediction variables with polynomial terms where applicable. Where repeated measures were taken (e.g., weekly production data), week was included in the model structure accordingly.Table 1 Biomechanic impact of diet on the tibiaω3:ω6Measure 0.12 0.36 0.83 1.35 Pooled SD Diet1x^n2 Ultimate Force (N) 210.48 222.20 206.18 223.55 35.82 ns - Ultimate Strain (mm) 1.84 2.07 2.06 2.04 0.28 ns - Ultimate Joule (E-1) 2.51 2.90 2.81 2.79 0.69 ns - Yield Stress (N) 95.45 93.99 96.01 103.52 19.98 ns - Yield Strain (mm) 0.31 0.30 0.34 0.31 0.06 ns - Young's Modulus 32.02 29.86 26.50 33.03 7.12 0.04 2 Elastic:Plastic 0.08 0.05 0.06 0.06 0.03 ns - 1P-value of the treatment term with the greatest polynomial; ns = non-significant. 2Value of the highest polynomial associated with the treatment effect. ResultsThe number of poor quality eggs was found to exhibit a positive dose-dependent correlation with ω3:ω6 ratio (p = 0.03). The side section of the shell exhibited a linear negative correlation to ω3:ω6 for work required to reach structural failure, i.e. greaterω3:ω6 resulted in weaker shells (p = 0.02). Several parameters assessing tibia bone biomechanics manifested a treatment effect, although only ultimate work exhibited the anticipated increase where ω3:ω6 ratio positively correlated to the amount of work required (p = 0.04; Table 1). No treatment effect was found for the presence of keel fractures (p>0.5), though portions of the keel where found to exhibit a treatment effect in biomechanic strengthultimate stress albeit in a non-linear fashion with values greatest in birds receiving the 0.36 and 1.35 rations. PUFA analysis of egg yolks found dose dependent increases in ALA and EPA though total long chain content appeared to level off beyond the 0.83 ration. Campylobacter concentrations in the caecum exhibited a treatment effect (p = 0.04) of a parabolic nature with the greatest value in birds receiving the 0.36 ω3:ω6 ration.Conclusions.Our data indicate that some of the long chain ω3 diets’ negative impacts (i.e., poor egg quality) can be alleviated relieved while sufficient ω3 egg yolk quantity is maintained by providing a mixture of short and long chain ω3 content. Benefits of mixed ration to bone and overall health are less clear and w...

Topics
  • density
  • impedance spectroscopy
  • mineral
  • polymer
  • experiment
  • laser emission spectroscopy
  • strength
  • dislocation
  • Calcium