People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rad, Saeed Doagou
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020An application-oriented roadmap to select polymeric nanocomposites for advanced applications: A reviewcitations
- 2019Investigation of conductive hybrid polymer composites reinforced with copper micro fibers and carbon nanotubes produced by injection moldingcitations
- 2019Development of metal–graphene-filled hybrid composites: Characterization of mechanical, thermal, and electrical propertiescitations
- 2019Multiscale molecular dynamics-FE modeling of polymeric nanocomposites reinforced with carbon nanotubes and graphenecitations
- 2018Correlation of mechanical and electrical properties with processing variables in MWCNT reinforced thermoplastic nanocompositescitations
- 2018Development of Highly Conductive Hybrid Composites
- 2018Interaction of nanofillers in injection-molded graphene/carbon nanotube reinforced PA66 hybrid nanocompositescitations
- 2018Damping Behavior of Carbon Nanotube Reinforced Nanocomposites: Micromechanical Modeling and Experiments
- 2017Investigation of the mechanical properties of GNP/MWCNT reinforced PA66 hybrid nanocomposites
- 2017Multi-Scale Modeling of the Structural and Vibrational Behavior of Carbon Nanotube Reinforced Polymeric Nanocomposite Plates
- 2017Influence of Processing Conditions on the Mechanical Behavior of MWCNT Reinforced Thermoplastic Nanocompositescitations
Places of action
Organizations | Location | People |
---|
document
Multi-Scale Modeling of the Structural and Vibrational Behavior of Carbon Nanotube Reinforced Polymeric Nanocomposite Plates
Abstract
Polymeric nanocomposites reinforced with carbon nanotubes are being considered as alternatives in many industrial applications. However, the mechanical behavior of the industrially produced nanocomposites is yet to be fully understood. In this study, Polyamide 6,6-based nanocomposites reinforced with different contents of multi-walled carbon nanotubes (MWCNTs) were manufactured using an injection moulding process. A multi-scale approach was followed to numerically model the mechanical behavior of the nanostructured materials. In order to find the stiffness matrix of the carbon nanotubes, different loading scenarios were conducted on the tubes using molecular dynamics simulations (LAMMPS). The derived properties of the carbon nanotubes from the atomistic simulations were included in a Benveniste Mori-Tanaka based micromechanical model allowing us to acquire the elastic mechanical properties in the produced nanocomposites with different arrangements and contents of the nanotubes. The numerical results were also compared with the experimental properties of the nanocomposites produced via different processing settings leading to distinct microstructures. Eventually the derived properties and stiffness matrices were incorporated in an in-house finite element code for plate vibrations. The results show how the arrangement and the content of the carbon nanotubes in the injection-moulded nanocomposite plates define their structural and vibrational behavior.