Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leppänen, Joosef

  • Google
  • 5
  • 2
  • 26

Chalmers University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2018On the numerical modelling of bond for the failure analysis of reinforced concrete26citations
  • 2017On the numerical modelling of bond for the failure analysis of reinforced concretecitations
  • 2006Concrete subjected to projectile and fragment impacts: Modelling of crack softening and strain rate dependency in tensioncitations
  • 2004Concrete Structures Subjected to Fragment Impactscitations
  • 2002Dynamic Behaviour of Concrete Structures subjected to Blast and Fragment Impacts.citations

Places of action

Chart of shared publication
Grassl, Peter
2 / 6 shared
Johansson, Morgan
2 / 2 shared
Chart of publication period
2018
2017
2006
2004
2002

Co-Authors (by relevance)

  • Grassl, Peter
  • Johansson, Morgan
OrganizationsLocationPeople

thesis

Concrete Structures Subjected to Fragment Impacts

  • Leppänen, Joosef
Abstract

As concrete is commonly used for protective structures, how a blast wave and fragment impacts from an explosion affect the concrete is an important issue. Concrete subjected to explosive loading responds very differently from statically loaded structures. The compressive and tensile strengths and the initial stiffness increase due to the strain rate effects. When fragments penetrate, spalling occur at the impact zone and scabbing may occur on the reverse side of a wall, or even perforation, with a risk of injury to people inside the structure. The principal aim of this thesis is to improve the current knowledge of the behaviour of concrete structures subjected to blast and fragment impacts. The main focus is on numerical modelling of fragment impacts on plain concrete members. In addition, experiments in combination with numerical analyses were conducted to deepen the understanding of concrete subjected to blast wave and fragment impacts. In the experiments, both multiple and single fragments were shot at thick concrete blocks. To capture the response of the concrete material behaviour, both the fragment impacts and the blast wave must be taken into account. The damage in the spalling zone is caused by the fragment impacts, whereas the major stress wave that propagates is caused mainly by the blast wave. To predict the penetration depth of the fragment impacts, spalling and scabbing in concrete with numerical methods, material models that take into account the strain rate effect, large deformations and triaxial stress states are required. The depth of penetration depends mainly on the compressive strength of the concrete. However, to model cracking, spalling and scabbing correctly in concrete, the tensile behaviour is very important. The RHT model in AUTODYN was used for the numerical analyses. The RHT model does not describe the concrete behaviour in tension accurately: the softening is linear and the strain rate dependency does not fit experimental results. Hence, a bi-linear softening law and a strain rate law were implemented in the model. By parametrical studies it was shown that the tensile strength, fracture energy and the strain rate law influenced the cracking and scabbing of concrete. By implementing the bi-linear softening law and a modified strain rate dependent law, the results of the numerical analyses were improved for projectile and fragment impacts on concrete.

Topics
  • impedance spectroscopy
  • experiment
  • strength
  • tensile strength