People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adamopoulos, George
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Solution-Processed Metal Oxide Gate Dielectrics and Their Implementations in Zinc Oxide Based Thin Film Transistors
- 2022Solution-processed thin film transistors incorporating YSZ gate dielectrics processed at 400 °ccitations
- 2018Characterization of spray pyrolyzed Ga2O3 thin films for thin-film transistor device applications
- 2018(INVITED) Solution-processed metal oxide-based CMOS
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in aircitations
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in air
- 2017(INVITED) Solution processed metal oxide-based electronics for displays applications employing both inkjet and spray coating techniques
- 2016(INVITED) Solution Processed SiO2 and high-k Dielectrics for MO-based CMOS TFTs
- 2016(INVITED) Solution Processed High-k Dielectrics for Thin Film Transistors Employing Metal Oxide-based Semiconducting Channels
- 2014Solution processed aluminium titanate dielectrics for their applications in high mobility ZnO based thin film transistors
- 2014Structure and properties of solution processed hafnium oxide gate dielectrics for their applications in high mobility ZnO based thin film transistors
- 2013Be-doped ZnO thin-film transistors and circuits fabricated by spray pyrolysis in aircitations
- 2011Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thin-Film Transistorscitations
- 2005Optical and electronic properties of plasma-deposited hydrogenated amorphous carbon nitride and carbon oxide filmscitations
- 2004Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopycitations
- 2003The electrochemical reactivity of amorphous hydrogenated carbon nitrides for varying nitrogen contents: the role of the substratecitations
- 2000Determination of bonding in amorphous carbons by electron energy loss spectroscopy, Raman scattering and X-ray reflectivitycitations
Places of action
Organizations | Location | People |
---|
document
Solution processed aluminium titanate dielectrics for their applications in high mobility ZnO based thin film transistors
Abstract
Metal oxide semiconductors are very attractive candidates for implementation into TFTs mainly because of their high charge carrier mobility, high optical transparency and excellent chemical stability. Recent work has also been focusing on the development of variable-voltage oxide transistors using mainly high-k dielectrics i.e. ZrO2, HfO2, Y2O3 and Al2O3. Oxide transistors based on high-k dielectrics have received the most attention and variable-voltage devices have been demonstrated. Here, we report solution-processed, variable-voltage ZnO transistors based on aluminium and titanium oxide composite films as the gate dielectrics. The films were deposited on ITO-coated glass substrates from Ti and Al soluble precursors using the spray pyrolysis technique at 400 oC. The dielectric films were characterised by AFM, UV-Vis absorption spectroscopy, admittance spectroscopy, X-ray diffraction and spectroscopic ellipsometry. Data analysis showed amorphous Al2O3 and stoichiometric (in the solution) Al2O3.TiO2 films with dielectric constants in the range between 9 and 14 and optical band gaps between 6.1 eV and 4.4 eV respectively. Similarly, stoichiometric Al2O3.TiO2 showed improved leakage currents by 2 orders of magnitude (compared to Al2O3) in the order of 1 nA/cm2. BG-TC ZnO-based TFTs that also manufactured by spray pyrolysis on Al2O3.TiO2 gate dielectrics showed enhanced electron mobilities from 9 cm2 V−1 s−1 to 23 cm2 V−1 s−1 and current on/off ratios from 10^4 to 10^6.