Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Viana, Pc

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Resin-bonded fixed dental prosthesis with a modified treatment surface in a zirconia framework: a case reportcitations

Places of action

Chart of shared publication
Lopes, I.
1 / 3 shared
Portugal, Jaime
1 / 14 shared
Kovacs, Z.
1 / 4 shared
Correia, Andre
1 / 8 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Lopes, I.
  • Portugal, Jaime
  • Kovacs, Z.
  • Correia, Andre
OrganizationsLocationPeople

article

Resin-bonded fixed dental prosthesis with a modified treatment surface in a zirconia framework: a case report

  • Viana, Pc
  • Lopes, I.
  • Portugal, Jaime
  • Kovacs, Z.
  • Correia, Andre
Abstract

Although resin-bonded fixed dental prostheses (RBFDPs) were developed almost 40 years ago, their implementation in clinical practice did not achieve success due to biomechanical failures of the restorative materials. Nowadays, the evolution of ceramic materials and bonding procedures has allowed for the revival of the dental prosthesis. Zirconia is the dental ceramic with the highest flexural strength under compression. However, there are still some concerns regarding the bonding strength of zirconia to enamel that require further research. In this article, through the presentation of three clinical cases, the authors show how modifying the surface of zirconia frameworks by applying a feldspathic veneering on the retainer's buccal surface allows for a bonding procedure to dental structures. The goal of this treatment method is to simultaneously improve structural strength, esthetic integration, and bonding optimization to enamel. In a 3-year prospective evaluation, this framework modification shows promising results, with a survival rate of 100% and no biological or mechanical complications. [GRAPHICS] .

Topics
  • impedance spectroscopy
  • surface
  • strength
  • flexural strength
  • ceramic
  • resin