Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chaliasou, Napoleana Anna

  • Google
  • 6
  • 4
  • 2

Aecom (United Kingdom)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2018Effect of recycled geopolymer concrete aggregate on strength development and consistence of Portland cement concretescitations
  • 2018Concretes incorporating recycled geopolymer aggregate - Implications and properties correlationscitations
  • 2018Chemical aspects related to using recycled geopolymers as aggregates2citations
  • 2016Investigation of the Recycling of Geopolymer Cement wastes as Fine Aggregates in Mortar Mixescitations
  • 2016Chemical aspects related to using recycled geopolymers as an aggregatecitations
  • 2016Recycling of fly ash-slag Geopolymer binder in mortar mixescitations

Places of action

Chart of shared publication
Calabria-Holley, Juliana
3 / 21 shared
Heath, Andrew
6 / 27 shared
Paine, Kevin
2 / 10 shared
Paine, Kevin A.
4 / 49 shared
Chart of publication period
2018
2016

Co-Authors (by relevance)

  • Calabria-Holley, Juliana
  • Heath, Andrew
  • Paine, Kevin
  • Paine, Kevin A.
OrganizationsLocationPeople

document

Chemical aspects related to using recycled geopolymers as an aggregate

  • Heath, Andrew
  • Chaliasou, Napoleana Anna
  • Paine, Kevin A.
Abstract

Geopolymer cements are alternative binders for concrete with low CO2 footprint and distinct chemical composition. They consist of aluminosilicate macromolecules and have a highly alkaline matrix due to the activating solutions used for their production. This paper is based on a study examining the recyclability of fly ash-slag based geopolymer paste as fine recycled concrete aggregate (RCA) in Portland cement and geopolymer mortars. Given the intrinsic structure of geopolymers, leaching of chemical substances from the RCA into the new paste was considered possible. SEM images and elemental mapping of the hardened mortars were used to evaluate the effect of RA. The potential of alkali silica reaction occurrence and the effect of RA extract on the initial setting time of cement were examined.<br/>

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • cement
  • chemical composition
  • leaching