Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Osifuye, C. O.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Corrosion and wear properties of Ni-Sn-P ternary deposits on mild steel via electroless methodcitations

Places of action

Chart of shared publication
Popoola, O. M.
1 / 1 shared
Loto, C. A.
1 / 3 shared
Popoola, A. P. I.
1 / 3 shared
Aigbodion, V. S.
1 / 3 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Popoola, O. M.
  • Loto, C. A.
  • Popoola, A. P. I.
  • Aigbodion, V. S.
OrganizationsLocationPeople

article

Corrosion and wear properties of Ni-Sn-P ternary deposits on mild steel via electroless method

  • Popoola, O. M.
  • Osifuye, C. O.
  • Loto, C. A.
  • Popoola, A. P. I.
  • Aigbodion, V. S.
Abstract

The rising necessity to improve corrosion and wear resistance of metals for engineering applications cannot be over emphasized. This has led to employing diverse models, method and techniques to obtain better corrosion and wear resistances for metallic materials and components which will otherwise fail during service. This work investigated the effect of Ni-P binary and Ni-Sn-P ternary electroless depositions on the corrosion and wear behavior of mild steel. Micro-structural examination using scanning electron microscopy (SEM) analysis shows finer and more evenly distributed particle orientation across the substrate surface. The Ni-Sn-P ternary deposits on the mild steel displayed from the linear polarization analysis a better corrosion resistance with corrosion rate values of 0.000246 mm/yr as compared with that of the Ni-P binary deposits with 0.016672 mm/yr. Also the coefficient of friction of the unplated sample varies between 0 and 0.08 while for the plated samples the coefficient of friction was relatively lesser and ranged from 0 to 0.02. Significant improvement in corrosion resistance was also indicated by a positive shift in potential. Sliding wear analysis demonstrates consistently enhanced wear resistance of the ternary deposits as well as the binary deposits, with the ternary Sn addition showing better resistance to wear. This work has established that Ni-Sn-P electroless coating of mild steel can be used to improve the corrosion and wear resistance for engineering applications.

Topics
  • Deposition
  • surface
  • corrosion
  • scanning electron microscopy
  • wear resistance
  • steel
  • coefficient of friction