Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

San Juan Mucientes, Marta

  • Google
  • 3
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Visualisation of subsurface defects in van-der-Waals heterostructures via 3D SPM mappingcitations
  • 2017Imaging subsurface defects in WS2/WSe2 CVD flakes via Ultrasonic Force Microscopiescitations
  • 2017Subsurface imaging of stacking faults and dislocations in WS2 CVD grown flakes via Ultrasonic and Heterodyne Force Microscopycitations

Places of action

Chart of shared publication
Kolosov, Oleg Victor
3 / 29 shared
Shearer, Melinda J.
1 / 1 shared
Hamers, Bob
2 / 2 shared
Zhao, Yuzhou
2 / 2 shared
Jin, Song
2 / 4 shared
Shearer, Melinda
1 / 1 shared
Chart of publication period
2019
2017

Co-Authors (by relevance)

  • Kolosov, Oleg Victor
  • Shearer, Melinda J.
  • Hamers, Bob
  • Zhao, Yuzhou
  • Jin, Song
  • Shearer, Melinda
OrganizationsLocationPeople

conferencepaper

Subsurface imaging of stacking faults and dislocations in WS2 CVD grown flakes via Ultrasonic and Heterodyne Force Microscopy

  • Kolosov, Oleg Victor
  • San Juan Mucientes, Marta
  • Shearer, Melinda
  • Hamers, Bob
  • Zhao, Yuzhou
  • Jin, Song
Abstract

The two-dimensional (2D) materials have multiple applications including optoelectronics [1] and fabrication of micro and nanoelectromechanical systems (MEMS and NEMS respectively), in particular, the layered transition metal dichalcogenide tungsten disulphide (WS2) already applied in the aerospace, automotive, and defence industries due to its high robustness. One of the WS2 synthetic methods is the Chemical Vapour Deposition (CVD) growth. By this method, the material is deposited creating complex structures formed by the orientation change of the individual layers of material making screw dislocations [1]. Therefore, analysing the structure under the surface is possible to understand how the spiral structures are stacked. We used SPM nanomechanical techniques combined with ultrasound - the Ultrasonic Force Microscopy (UFM) and the Heterodyne Force Microscopy (HFM) to identify the dislocations and faults between several stacked WS2 layers. The UFM images allowed to identify different areas with different stiffness which in the topographic AFM images do not show any particular features. The HFM images have better contrast when the difference frequency is equal to the contact resonance of the cantilever (54.4kHz). References [1] M.J. Shearer, L. Samad, Y. Zhang, Y. Zhao, A. Puretzky, K.W. Eliceiri, J.C. Wright, R.J. Hamers, S. Jin, Journal of the American Chemical Society, 139 (2017) 3496-3504. [2] F. Dinelli, M.R. Castell, D.A. Ritchie, N.J. Mason, G.A.D. Briggs, O.V. Kolosov, Philosophical Magazine A, Physics of Condensed Matter Structure Defects and Mechanical Properties, 80 (2000) 2299-2323. [3] M.T. Cuberes, H.E. Assender, G.A.D. Briggs, O.V. Kolosov, Journal of Physics D-Applied Physics, 33 (2000) 2347-2355.

Topics
  • impedance spectroscopy
  • surface
  • atomic force microscopy
  • layered
  • dislocation
  • ultrasonic
  • two-dimensional
  • tungsten
  • chemical vapor deposition
  • stacking fault