Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alzaidy, G.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015CVD-grown tin sulphide for thin film solar cell devicescitations

Places of action

Chart of shared publication
Huang, Chung-Che
1 / 38 shared
Hewak, Daniel W.
1 / 80 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Huang, Chung-Che
  • Hewak, Daniel W.
OrganizationsLocationPeople

document

CVD-grown tin sulphide for thin film solar cell devices

  • Huang, Chung-Che
  • Alzaidy, G.
  • Hewak, Daniel W.
Abstract

Chalcogenide materials are emerging as leading thin film photovoltaic (PV) technology. Tin mono-sulphide, a p-type semiconductor with a band gap of ~1.3 eV, has attracted great interest for the use as an absorber layer in chalcogenide thin film solar cells due to its desirable properties as an absorber layer in scalable, inexpensive, and non-toxic solar cells. In this work thin films of tin sulphide have been deposited by chemical vapour deposition (CVD) at room temperature onto soda-lime substrates then annealed at five different temperatures 200, 250, 350, 400 and 450°C with the aim of optimizing the properties of the thin films to achieve the required phase for use in solar cell device structures. These annealed CVD-grown tin sulphide thin films were further characterized with SEM, EDX, XRD, Raman and UV-VIS-NIR spectroscopy. The preliminary results of these tin sulphide thin films show great promise for PV applications.

Topics
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • Energy-dispersive X-ray spectroscopy
  • tin
  • chemical vapor deposition
  • lime
  • p-type semiconductor
  • ultraviolet-visible-near infrared spectroscopy