People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bafekrpour, Ehsan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2015Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocompositescitations
- 2012Effect of compositional gradient on thermal behavior of synthetic graphite-phenolic nanocompositescitations
- 2012Composition-optimized synthetic graphite/polymer nanocomposites
Places of action
Organizations | Location | People |
---|
document
Composition-optimized synthetic graphite/polymer nanocomposites
Abstract
In this study the optimization design, fabrication and characterization of synthetic graphite/phenolic nanocomposites are performed. The composition of synthetic graphite/phenolic nanocomposites was controlled across the thickness by stacking eight homogeneous layers containing 0, 5, 10, and 20wt synthetic graphite in different sequences. Four compositional gradient patterns, as well as a homogenous nanocomposite, with the same geometry and synthetic graphite content, were fabricated to investigate the optimized design for thermomechanical properties. Results show that nanocomposites with a high concentration of synthetic graphite on the surfaces and neat resin at the center have the best thermomechanical and viscoelastic properties.