People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jørgensen, Henrik Brøner
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Mechanical modeling of dowel action and the influence of small amounts of shear reinforcement on the shear-transfer actions in RC beamscitations
- 2023Mechanical modeling of dowel action and the influence of small amounts of shear reinforcement on the shear-transfer actions in RC beamscitations
- 2022Experimental investigation of the influence of stirrup spacing on the shear capacity of reinforced concrete beams
- 2022Experimental investigation of the influence of stirrup spacing on the shear capacity of reinforced concrete beams
- 2021Experimental Investigation of the Shear Capacity of RC Beams with Very Small Amounts of Shear Reinforcement
- 2021Experimental Investigation of the Shear Capacity of RC Beams with Very Small Amounts of Shear Reinforcement
- 2017Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes
- 2013Tests and limit analysis of loop connections between precast concrete elements loaded in tensioncitations
Places of action
Organizations | Location | People |
---|
document
Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes
Abstract
Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T-connections grouted with mortar. The test results are evaluated based on the experiences gained from test and modelling of similar plane connections. It is found that T-connections, in contrast to the plane connections, are more prone to fail by rupture of the brittle wire ropes rather than crushing of the joint mortar. Even so, it is found that a ductile post peak response can be obtained for T-connections, especially when so-called double wire boxes are used.