Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Micelotta, E.

  • Google
  • 4
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2013The Circle of Dust: From Nanoparticles to Macromolecules and Beyondcitations
  • 2013The Circle of Dust: From Nanoparticles to Macromolecules and Beyondcitations
  • 2013On the Excitation and Formation of Circumstellar Fullerenescitations
  • 2013On the Excitation and Formation of Circumstellar Fullerenescitations

Places of action

Chart of shared publication
Bernard-Salas, J.
2 / 8 shared
Bocchio, M.
2 / 3 shared
Jones, A.
1 / 13 shared
Cami, J.
4 / 7 shared
Jones, Anthony
2 / 20 shared
Peeters, E.
2 / 6 shared
Bernard-Salas, Jeronimo
2 / 3 shared
Jones, A. P.
1 / 12 shared
Groenewegen, M. A.
2 / 2 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Bernard-Salas, J.
  • Bocchio, M.
  • Jones, A.
  • Cami, J.
  • Jones, Anthony
  • Peeters, E.
  • Bernard-Salas, Jeronimo
  • Jones, A. P.
  • Groenewegen, M. A.
OrganizationsLocationPeople

document

The Circle of Dust: From Nanoparticles to Macromolecules and Beyond

  • Bernard-Salas, J.
  • Bocchio, M.
  • Jones, A.
  • Micelotta, E.
  • Cami, J.
Abstract

There is increasing observational evidence that a non-negligible fraction of the cosmic carbon is locked up into macromolecules and nanoparticles. Carbonaceous nanoparticles and Hydrogenated Amorphous Carbon (HAC) nanoparticles represent one of the main components of interstellar dust. HAC nanoparticles have been proposed as a viable carrier for the Unidentified InfraRed (UIR) bands, which dominate the mid-infrared spectrum of almost any astronomical object. Fullerene molecules C60 and C70 have been detected in various circumstellar and interstellar environments. We present some of our recent results about the evolution of such carbonaceous structures and the possible connections between each other. We show how photo-processing of HAC nanoparticles can lead to the formation of C60 and C70 in space. There the low density of the gas precludes the formation of fullerene materials following known vaporization or combustion synthesis routes, even on astronomical timescales. We then discuss the processing of small hydrocarbon dust by energetic ions and electrons under extreme conditions, e.g., in shocked regions. Finally, we derive the astrophysical implications of such processing in terms of the observed emission....

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • amorphous
  • Carbon
  • combustion