People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shepherd, David P.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2018Yb-doped mixed sesquioxide thin films grown by pulsed laser depositioncitations
- 2018Towards high-power on-chip GHz frequency combs
- 2017Tailoring the refractive index of films during pulsed laser deposition growth
- 2017Pulsed laser deposition of garnets at a growth rate of 20-microns per hour
- 2016Laser performance of Yb-doped-garnet thin films grown by pulsed laser deposition
- 2016PLD growth of complex waveguide structures for applications in thin-film lasers: a 25 year retrospective
- 2016Engineered crystal layers grown by pulsed laser deposition: making bespoke planar gain-media devices
- 2016Pulsed laser deposited crystalline optical waveguides for thin-film lasing devices
- 2015Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide laserscitations
- 2015Pulsed laser-assisted fabrication of laser gain media
- 2015Towards fabrication of 10 W class planar waveguide lasers: analysis of crystalline sesquioxide layers fabricated via pulsed laser deposition
- 2014Near-infrared, mode-locked waveguide lasers with multi-GHz repetition rates
- 2014Pulsed laser deposition of thin films for optical and lasing waveguides (including tricks, tips and techniques to maximize the chances of growing what you actually want)
- 2014Graphene q-switched Yb: phosphate glass channel waveguide laser
- 2012Passively mode-locked diode-pumped monolithic channel waveguide laser with a repetition rate of 4.9 GHz
- 2008Current state-of-the-art of pulsed laser deposition of optical waveguide structures: existing capabilities and future trendscitations
- 2006Optical waveguide growth and applications
- 2004Laser operation of a low loss (0.1dB/cm) Nd:Gd3Ga5O12 thick (40 micron) planar waveguide grown by pulsed laser depositioncitations
- 2004Channel waveguide lasers in a lead silicate glass fashioned using the extrusion techniquecitations
- 2003Gain measurements at 2.8µm and fluorescence spectroscopy in Er:LaF3 waveguides fabricated by molecular beam epitaxy
- 2003Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etchingcitations
- 2002Laser-assisted microstructuring for Ti:sapphire channel-waveguide fabrication
- 2002Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fibre lasercitations
- 2002Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glasscitations
Places of action
Organizations | Location | People |
---|
document
Passively mode-locked diode-pumped monolithic channel waveguide laser with a repetition rate of 4.9 GHz
Abstract
Ultrashort-pulse laser systems operating at gigahertz repetition rates are of considerable interest for applications ranging from biophotonics to optical frequency metrology. Waveguide solid-state lasers in combination with passive mode-locking techniques can offer attractive features for multi-GHz operation. They combine the favourable properties of low-threshold and high-efficiency operation, stable mode-locking at reduced intracavity pulse energy due to strong saturation of both gain medium and a saturable absorber and compatibility with monolithic short cavity designs. Previously, passively mode-locked Er-doped waveguide lasers operating around 1.5 µm have been demonstrated, however, these devices had pulse repetition frequencies in the megahertz range and at low average output powers of about or less than 1 mW level [1,2].<br/>Here we report, for the first time to our knowledge, a passively mode locked Yb:glass channel waveguide laser assembled into a diode pumped monolithic configuration. The laser produced pulses with a duration of 740 fs at around 1.05 µm centre wavelength with a fundamental pulse repetition frequency of 4.93 GHz and an average output power of 81 mW.<br/>An ion-exchange method was used to fabricate channel waveguides in a 12 wt% Yb-doped IOG-1 phosphate glass sample [3]. A 200 nm thick Aluminium mask was used to define channel openings with widths varying from 1 µm to 10 µm after which ion exchange was carried out at 325 °C for 10 min with a melt composition of 45 mol% KNO<sub>3</sub> : 50 mol% NaNO<sub>3</sub> : 5 mol% AgNO<sub>3</sub>. Following the ion-exchange step, the Al mask was chemically removed and the end facets of the glass were polished to give a device length of 20 mm.<br/> A single-mode fiber-coupled laser diode operating at 980.6 nm and delivering up to 750 mW of average power was used as the pump source. Its beam was coupled into the waveguide through an output coupler by using a 16x aspheric lens that provided 8.8 mm diameter pump spot size. A dichroic beam splitter was used to separate pump and laser radiation. During continuous wave operation of the Yb:glass waveguide laser (the laser cavity was formed by a high-reflector (HR) dielectric mirror and an output coupler (OC) both end butted to the waveguide) average powers of up to 108 mW and 156 mW with 2% and 4% OCs, respectively, were produced. When the HR mirror was replaced by a SESAM (0.4% modulation depth, 0.3% non-saturable losses, 0.5 ps relaxation time), stable mode locking was achieved after careful adjustment of both SESAM and OC positions relatively to the waveguide end facets. With the 2% OC in place, pulses as short as 740fs (Fig. 1(a)) were generated with an average output power of 31 mW at pulse repetition frequency of about 4.93 GHz (Fig. 1(c)). The corresponding optical spectrum (Fig. 1(b)) was centred at 1058 nm with a bandwidth of 2.3 nm implying a time-bandwidth product of 0.46. An average output power up to 81 mW was reached during mode locking at slightly longer pulse durations of 0.8 ps when 4% OC was employed. The waveguide laser output was nearly diffraction limited with M2 of about 1.1 for both x and y directions.