Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sámson, Zsolt

  • Google
  • 1
  • 11
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Chalcogenide plasmonic metamaterial switchescitations

Places of action

Chart of shared publication
Huang, Chung-Che
1 / 38 shared
Zhang, J.
1 / 62 shared
Hewak, Daniel W.
1 / 80 shared
Knight, K.
1 / 13 shared
Angelis, F. De
1 / 5 shared
Uchino, T.
1 / 8 shared
Gholipour, B.
1 / 9 shared
Adamo, G.
1 / 5 shared
Macdonald, Kevin
1 / 12 shared
Fabrizio, E. Di
1 / 5 shared
Ashburn, P.
1 / 13 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Huang, Chung-Che
  • Zhang, J.
  • Hewak, Daniel W.
  • Knight, K.
  • Angelis, F. De
  • Uchino, T.
  • Gholipour, B.
  • Adamo, G.
  • Macdonald, Kevin
  • Fabrizio, E. Di
  • Ashburn, P.
OrganizationsLocationPeople

document

Chalcogenide plasmonic metamaterial switches

  • Huang, Chung-Che
  • Zhang, J.
  • Hewak, Daniel W.
  • Knight, K.
  • Angelis, F. De
  • Uchino, T.
  • Gholipour, B.
  • Adamo, G.
  • Macdonald, Kevin
  • Sámson, Zsolt
  • Fabrizio, E. Di
  • Ashburn, P.
Abstract

The material technology behind rewritable optical disks and the latest generation of electronic memory offers a new broadband switching paradigm for metamaterials. Non-volatile, electrically- or optically-addressed switching devices for visible to mid-infrared wavelengths can be created by hybridizing planar metamaterials with functional chalcogenide glass.<br/> We demonstrate experimentally that converting this phase-change medium between amorphous and crystalline states brings about significant changes in the resonant optical properties (transmission, reflection and absorption) of hybrid metamaterials based on metallic nanostructures supporting plasmonic dark-mode resonances. The transition between amorphous and crystalline forms brings about a substantial shift (&gt;10%) in the resonance wavelength of the hybrid structure, providing transmission and reflection modulation functionality with contrast ratios of up to 4:1 in a device of sub-wavelength thickness.

Topics
  • amorphous
  • phase
  • glass
  • glass
  • metamaterial