People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Matikainen, Ville
Tampere University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2022Electrochemical Corrosion Characterization of Submicron WC-12Co Coatings Produced by CGS and HVAF Compared with Sintered Bulkscitations
- 2022Electrochemical Corrosion Characterization of Submicron WC-12Co Coatings Produced by CGS and HVAF Compared with Sintered Bulkscitations
- 2022Investigation of novel nano-carbide WC/CoCr coatings applied by HVAF
- 2020A study of Cr3C2-based HVOF- and HVAF-sprayed coatingscitations
- 2019Slurry and dry particle erosion wear properties of WC-10Co4Cr and Cr3C2-25NiCr hardmetal coatings deposited by HVOF and HVAF spray processescitations
- 2019Chlorine induced high-temperature corrosion mechanisms in HVOF and HVAF sprayed Cr3C2-based hardmetal coatingscitations
- 2018Tribology of FeVCrC coatings deposited by HVOF and HVAF thermal spray processescitations
- 2018High Speed Slurry-Pot Erosion Wear Testing of HVOF and HVAF Sprayed Hardmetal Coatings
- 2018Slurry and dry particle erosion wear properties of WC-10Co4Cr and Cr3C2-25NiCr hardmetal coatings deposited by HVOF and HVAF spray processes
- 2018Chlorine-Induced High Temperature Corrosion of Inconel 625 Sprayed Coatings Deposited with Different Thermal Spray Techniquescitations
- 2018Effect of Carbide Dissolution on Chlorine Induced High Temperature Corrosion of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatingscitations
- 2018Wear resistance of HVAF-sprayed hardmetal coatings
- 2017Effect of Nozzle Geometry on the Microstructure and Properties of HVAF Sprayed Hard Metal Coatings
- 2017Effect of Carbide Dissolution in the Metal Matrix of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings on the Initial Stage of Chlorine High Temperature Corrosion
- 2017Chlorine-Induced High Temperature Corrosion of Inconel 625 Sprayed Coatings Deposited with Different Thermal Spray Techniquescitations
- 2017A Study of Cr3C2-Based HVOF- and HVAF-Sprayed Coatingscitations
- 2017Cavitation erosion, slurry erosion and solid particle erosion performance of metal matrix composite (MMC) coatings sprayed with modern high velocity thermal spray processes
- 2017Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatingscitations
- 2016Electron Microscopic Characterization of Thermally-Sprayed Cr3C2-37WC-18-NiCoCrFe Coating
- 2016Microstructure and Sliding Wear Behavior of Fe-Based Coatings Manufactured with HVOF and HVAF Thermal Spray Processescitations
- 2016Corrosion Behavior of WC-FeCrAl Coatings Deposited by HVOF and HVAF Thermal Spraying Methods
- 2016Sliding and abrasive wear behaviour of HVOF- and HVAF-sprayed Cr3C2-NiCr hardmetal coatingscitations
- 2015Microstructural Characteristics Of Different Cr3C2 Coating Compositions Sprayed with HVAF Process
- 2015High Temperature 3-body Abrasive Wear of HVOF and HVAF Sprayed Cr3C2-NiCr Coatings
- 2015Advanced coatings by novel high-kinetic thermal spray processes
- 2015Corrosion Behavior of WC-Ni Coatings Deposited by Different Thermal Spraying Methods
- 2015Effect of spraying parameters on the microstructural and corrosion properties of HVAF-sprayed Fe-Cr-Ni-B-C coatingscitations
- 2015Tribology of HVOF- and HVAF-sprayed WC-10Co4Cr hardmetal coatingscitations
Places of action
Organizations | Location | People |
---|
article
Corrosion Behavior of WC-FeCrAl Coatings Deposited by HVOF and HVAF Thermal Spraying Methods
Abstract
The present work compares the mechanical properties and corrosion resistance of WC-FeCrAl coatings manufactured using high-velocity oxygen fuel (HVOF) technology equipped with DJ2700 spraying gun and high-velocity air fuel (HVAF) equipment using M3 supersonic spraying gun. The results indicated that decarburization of carbide phase occurred in both. It was found out that the deposition velocity is an important factor influencing the density of the coating <br/>and thus the amount of porosity. The HVAF sprayed WC-FeCrAl coating revealed the lowest degree of porosity, higher hardness and lower degree of decarburization, achieving the best properties in terms of electrochemical corrosion resistance compared to HVOF sprayed coating.