Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gates, James C.

  • Google
  • 23
  • 109
  • 144

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (23/23 displayed)

  • 2022Functionalised optical fiber devices for nonlinear photonics: from high harmonics generation to frequency combcitations
  • 2021Design of polarization-maintaining FBGs using polyimide films to improve strain-temperature sensing in CFRP laminates15citations
  • 2020Photonic glass ceramics based on SnO 2 nanocrystals: advances and perspectives4citations
  • 2020Enhancement of nonlinear functionality of step-index silica fibers combining thermal poling and 2D materials deposition2citations
  • 2020Four-port integrated waveguide coupler exploiting bi-directional propagation of two single-mode waveguidescitations
  • 2020SiO2-SnO2:Er3+ planar waveguides: highly photorefractive glass-ceramics8citations
  • 2020Structural health monitoring of composite laminate for aerospace applications via embedded panda fiber Bragg grating2citations
  • 2019Impact of the electrical configuration on the thermal poling of optical fibres with embedded electrodes: Theory and experimentscitations
  • 2018Direct UV written integrated waveguides using 213nm lightcitations
  • 2017High-birefringence direct-UV-written silica waveguides for heralded single-photon sources at telecom wavelengthscitations
  • 2017Photonic crystal and quasi-crystals providing simultaneous light coupling and beam splitting within a low refractive-index slab waveguide29citations
  • 2016An integrated optical Bragg grating refractometer for volatile organic compound detection14citations
  • 2016Photonic quantum networkscitations
  • 2015Optically integrated fiber: a new platform for harsh environmental sensingcitations
  • 2015Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometercitations
  • 2014Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer24citations
  • 2013Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime24citations
  • 2013Polish-like facet preparation via dicing for silica integrated optics2citations
  • 2013Facet machining of silica waveguides with nanoscale roughness without polishing or lappingcitations
  • 2010Micromachined multimode interference device in flat-fiber2citations
  • 2010Integrated optic glass microcantilevers with Bragg grating interrogation15citations
  • 2007Line defects and temperature effects in liquid crystal tunable planar Bragg gratings3citations
  • 2004Mapping phase and amplitude of optical field distributions in fiber Bragg gratingscitations

Places of action

Chart of shared publication
Lewis, Adam
1 / 2 shared
Leo, Francois
2 / 7 shared
Englebert, Nico
1 / 1 shared
Brambilla, Gilberto
1 / 37 shared
Sazio, Pier-John
4 / 56 shared
Lucia, Francesco De
3 / 8 shared
Bannerman, Rex
5 / 6 shared
Anelli, F.
2 / 5 shared
Prudenzano, F.
2 / 13 shared
Holmes, Christopher
11 / 18 shared
Annunziato, A.
2 / 5 shared
Varas, Stefano
2 / 19 shared
Righini, Giancarlo C.
2 / 41 shared
Ferrari, Maurizio
2 / 49 shared
Chiasera, Alessandro
2 / 35 shared
Chiappini, Andrea
2 / 33 shared
Zur, Lidia
2 / 17 shared
Armellini, Cristina
2 / 16 shared
Carpentiero, Alessandro
2 / 12 shared
Lukowiak, Anna
2 / 22 shared
Berneschi, Simone
2 / 23 shared
Huang, Chung-Che
1 / 38 shared
Hewak, Daniel W.
1 / 80 shared
Gorza, Simon-Pierre
1 / 2 shared
Englebert, Nicolas
2 / 4 shared
Sahu, Jayanta Kumar
3 / 64 shared
Núñez-Velázquez, Martin Miguel Angel
2 / 17 shared
Lewis, Adam Henry
1 / 1 shared
Horak, Peter
1 / 23 shared
Gawith, Corin
2 / 7 shared
Smith, Peter G. R.
14 / 20 shared
Weisen, Mathias John
1 / 2 shared
Bollani, Monica
1 / 18 shared
Tran, Thi Ngoc Lam
1 / 5 shared
Conti, Gualtiero Nunzi
1 / 6 shared
Trono, Cosimo
1 / 4 shared
Erario, A.
1 / 1 shared
Abbate, G.
1 / 1 shared
Godfrey, Mike
1 / 4 shared
Jantzen, Senta L.
1 / 2 shared
Ciminelli, C.
1 / 1 shared
Gorza, Simon Pierre
1 / 3 shared
Gow, Paul C.
1 / 1 shared
Smith, D. H.
1 / 1 shared
Mennea, P. L.
1 / 1 shared
Posner, Matthew
1 / 1 shared
Pollard, Michael E.
1 / 3 shared
Angeles, Cesar A.
1 / 1 shared
Charlton, M. D. B.
1 / 3 shared
Shi, Jingxing
1 / 1 shared
Chen, Ruiqi
1 / 3 shared
Quainoo, Priscilla
1 / 1 shared
Grossel, Martin C.
1 / 4 shared
Parker, Richard M.
1 / 1 shared
Cooper, Peter
1 / 1 shared
Wales, Dominic J.
1 / 5 shared
Ledingham, Patrick
1 / 1 shared
Clements, W.
1 / 1 shared
Kazcmarek, K.
1 / 1 shared
Chrzanowski, H.
1 / 1 shared
Humphreys, P. C.
1 / 1 shared
Eckstein, A.
1 / 1 shared
Munns, J. H. D.
1 / 1 shared
Kolthammer, W. S.
1 / 1 shared
Nunn, J.
1 / 4 shared
Walmsley, I. A.
1 / 1 shared
Renema, J.
1 / 1 shared
Barz, S.
1 / 1 shared
Metcalf, B. J.
1 / 1 shared
Smith, B. J.
1 / 4 shared
Qiu, C.
1 / 3 shared
Poem, E.
1 / 1 shared
Saunders, D.
1 / 2 shared
Brecht, B.
1 / 1 shared
Feizpour, A.
1 / 1 shared
Carpenter, Lewis Glynn
1 / 1 shared
Carpenter, Lewis
3 / 4 shared
Rogers, Helen
3 / 3 shared
Cooper, Peter A.
1 / 1 shared
Webb, A. S.
1 / 8 shared
Ambran, S.
1 / 1 shared
Rogers, Helen L.
1 / 1 shared
Carpenter, Lewis G.
1 / 1 shared
Kaczmarek, M.
1 / 1 shared
Dyadyusha, A.
1 / 1 shared
Adikan, F. R. M.
1 / 1 shared
Snow, B. D.
1 / 1 shared
Brocklesby, William
1 / 5 shared
Chart of publication period
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2010
2007
2004

Co-Authors (by relevance)

  • Lewis, Adam
  • Leo, Francois
  • Englebert, Nico
  • Brambilla, Gilberto
  • Sazio, Pier-John
  • Lucia, Francesco De
  • Bannerman, Rex
  • Anelli, F.
  • Prudenzano, F.
  • Holmes, Christopher
  • Annunziato, A.
  • Varas, Stefano
  • Righini, Giancarlo C.
  • Ferrari, Maurizio
  • Chiasera, Alessandro
  • Chiappini, Andrea
  • Zur, Lidia
  • Armellini, Cristina
  • Carpentiero, Alessandro
  • Lukowiak, Anna
  • Berneschi, Simone
  • Huang, Chung-Che
  • Hewak, Daniel W.
  • Gorza, Simon-Pierre
  • Englebert, Nicolas
  • Sahu, Jayanta Kumar
  • Núñez-Velázquez, Martin Miguel Angel
  • Lewis, Adam Henry
  • Horak, Peter
  • Gawith, Corin
  • Smith, Peter G. R.
  • Weisen, Mathias John
  • Bollani, Monica
  • Tran, Thi Ngoc Lam
  • Conti, Gualtiero Nunzi
  • Trono, Cosimo
  • Erario, A.
  • Abbate, G.
  • Godfrey, Mike
  • Jantzen, Senta L.
  • Ciminelli, C.
  • Gorza, Simon Pierre
  • Gow, Paul C.
  • Smith, D. H.
  • Mennea, P. L.
  • Posner, Matthew
  • Pollard, Michael E.
  • Angeles, Cesar A.
  • Charlton, M. D. B.
  • Shi, Jingxing
  • Chen, Ruiqi
  • Quainoo, Priscilla
  • Grossel, Martin C.
  • Parker, Richard M.
  • Cooper, Peter
  • Wales, Dominic J.
  • Ledingham, Patrick
  • Clements, W.
  • Kazcmarek, K.
  • Chrzanowski, H.
  • Humphreys, P. C.
  • Eckstein, A.
  • Munns, J. H. D.
  • Kolthammer, W. S.
  • Nunn, J.
  • Walmsley, I. A.
  • Renema, J.
  • Barz, S.
  • Metcalf, B. J.
  • Smith, B. J.
  • Qiu, C.
  • Poem, E.
  • Saunders, D.
  • Brecht, B.
  • Feizpour, A.
  • Carpenter, Lewis Glynn
  • Carpenter, Lewis
  • Rogers, Helen
  • Cooper, Peter A.
  • Webb, A. S.
  • Ambran, S.
  • Rogers, Helen L.
  • Carpenter, Lewis G.
  • Kaczmarek, M.
  • Dyadyusha, A.
  • Adikan, F. R. M.
  • Snow, B. D.
  • Brocklesby, William
OrganizationsLocationPeople

document

Mapping phase and amplitude of optical field distributions in fiber Bragg gratings

  • Gates, James C.
  • Brocklesby, William
Abstract

Developments in the technique of Near-field Scanning Optical Microscopy (NSOM) [1] have made possible the mapping of both amplitude and phase of electric fields in photonic devices using simple interferometry. Combined with heterodyne techniques, this gives very high sensitivity within the technologically important 1.5µm wavelength regime. We describe experiments that use this capability to study one of the most important telecommunications components, the fiber Bragg grating. Interferometric SNOM allows us to measure the amplitude and phase of the optical field within the fiber Bragg gratings directly. The evanescent fields, which are usually protected by the fiber cladding, are exposed by polishing off the cladding on one side of the fiber. These fields are measured using photon scanning tunneling microscopy (PSTM), and detection is achieved using a heterodyne fiber interferometer. The laser source is tunable across the first order stop band region of the grating. The low index contrast and high degree of perfection of the periodic structure, combined with its long length, mean that measurements are not dominated by out-of-plane scattering or scattering from the beginning and end of the grating, which have been problematic in many NSOM investigations of photonic crystals. The reflection spectrum of the fiber Bragg grating is complex, and shows bands due to the structure of the 1D photonic crystal formed by the refractive index variation along the core, as well as other bands due to the interaction of the core and cladding modes. Each of these bands has been studied by tuning the probe laser to the appropriate wavelength. The standing wave along the grating can be considered to be the sum of two counterpropagating waves. The application of heterodyne techniques allows us to deconvolve the amplitudes and relative phases of the two counterpropagating components, and show that they agree well with predictions based on grating theory [2]. In addition, the variation of the physical positions of field antinodes can be measured as a function of wavelength. As the laser wavelength is increased through the grating stop band, the antinode position is predicted to shift from the high index to the low index grating regions, a shift of -λ/4, or λ/2. As an example of what can be achieved using this mode of imaging, we have measured this position shift directly, and the composite image of field antinodes at wavelengths above and below the stop band shown in figure 1. This technique will be applicable to study the more complex structures possible in fiber gratings, such as deliberately introduced defects, or phase slips.

Topics
  • impedance spectroscopy
  • phase
  • theory
  • experiment
  • composite
  • defect
  • optical microscopy
  • scanning tunneling microscopy
  • polishing
  • interferometry