Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dadashzadeh, M.

  • Google
  • 2
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Modelling the impacts of fire in a typical FLNG processing facilitycitations
  • 2017Modelling the impacts of fire in a typical FLNG processing facilitycitations

Places of action

Chart of shared publication
Khan, Faisal
2 / 9 shared
Garaniya, Vikram
2 / 13 shared
Baalisampang, T.
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Khan, Faisal
  • Garaniya, Vikram
  • Baalisampang, T.
OrganizationsLocationPeople

document

Modelling the impacts of fire in a typical FLNG processing facility

  • Khan, Faisal
  • Baalisampang, T.
  • Garaniya, Vikram
  • Dadashzadeh, M.
Abstract

In the past oil and gas industry had experienced numerous major accidents with catastrophic consequences. Among oil and gas processing technologies, floating liquefied natural gas (FLNG) is an emerging technology which has no operational experiences or lesson learnt to date. In any processing facilities, fire is considered as one of the major hazards. A risk due to fire is considered as the most critical among all other potential risk in FLNG processing facilities due to inherent flammable hazards of hydrocarbons, hydrodynamic interactions, high pressures and their synergistic effects. There is a need of an adequate fire risk assessment and consequence analysis of FLNG processing facilities. Therefore, this study proposes a novel risk-based methodology for modelling the impacts of fire event in a typical FLNG processing facility. The impacts of fire event on adjacent assets and personnel are assessed considering a credible leakage of LNG with an immediate ignition. The scenario is computationally simulated using Fire Dynamic Simulator (FDS). The results of the simulation are used for impact assessment based on predefined criteria and safety measured design is considered to mitigate or avoid the impacts. As part of the safety measured design, a generic water deluge system is installed adjacent to fire location. After the activation of the water deluge system, it is found that the impacts and corresponding risk are significantly reduced. It is evident that the proposed methodology can assess fire impact and manage the associated risks. Additionally, the methodology can be used further for assessing primary propagation of domino effects in a complex processing facility.

Topics
  • impedance spectroscopy
  • simulation
  • activation