Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mills, Liam

  • Google
  • 2
  • 8
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020High bond strength Cu joints fabricated by rapid and pressureless in situ reduction-sintering of Cu nanoparticles35citations
  • 2015High temperature reliability of power module substratescitations

Places of action

Chart of shared publication
Zuo, Yang
1 / 1 shared
Carter-Searjeant, Sadie
1 / 1 shared
Green, Mark
1 / 15 shared
Mannan, Samjid Hassan
1 / 29 shared
Mawby, Philip A.
1 / 3 shared
Jennings, Michael R.
1 / 4 shared
Bowen, James
1 / 51 shared
Hamilton, Dean P.
1 / 4 shared
Chart of publication period
2020
2015

Co-Authors (by relevance)

  • Zuo, Yang
  • Carter-Searjeant, Sadie
  • Green, Mark
  • Mannan, Samjid Hassan
  • Mawby, Philip A.
  • Jennings, Michael R.
  • Bowen, James
  • Hamilton, Dean P.
OrganizationsLocationPeople

conferencepaper

High temperature reliability of power module substrates

  • Mawby, Philip A.
  • Mills, Liam
  • Jennings, Michael R.
  • Bowen, James
  • Hamilton, Dean P.
Abstract

The thermal cycling reliability of candidate copper and aluminium power substrates has been assessed for use at temperatures exceeding 300°C peak using a combination of thermal cycling, nanoindentation and finite element modelling to understand the relative stresses and evolution of the mechanical properties. The results include the relative cycling lifetimes up to 350°C, demonstrating almost an order of magnitude higher lifetime for active metal brazed Al / AlN substrates over Cu / Si<sub>3</sub>N<sub>4</sub>, but four times more severe roughening and cracking of the Ni-P plating's on the Al / AlN (DBA) substrates. The nonlinear finite element modelling illustrated that the yield strength of the metal and the thickness of the ceramic are the main stress controlling factors, but comparisons with the cycling lifetime results demonstrated that the fracture toughness (resistance) of the ceramic is the over-riding controlling factor for the overall passive thermal cycling lifetimes. In order to achieve the highest substrate lifetime for the highly stressed high temperature thermal cycled applications, the optimum solution appears to be annealed copper, brazed on to a thicker than normal or higher fracture toughness Si<sub>3</sub>N<sub>4</sub> ceramic.

Topics
  • impedance spectroscopy
  • aluminium
  • strength
  • nanoindentation
  • copper
  • yield strength
  • ceramic
  • fracture toughness