People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spiccia, Leone
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2017Polypyridyl Iron Complex as a Hole-Transporting Material for Formamidinium Lead Bromide Perovskite Solar Cellscitations
- 2017Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cellscitations
- 2017Vertically Aligned Interlayer Expanded MoS2 Nanosheets on a Carbon Support for Hydrogen Evolution Electrocatalysiscitations
- 2017A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar perovskite solar cellscitations
- 2016Solar water oxidation by multicomponent TaON photoanodes functionalized with nickel oxidecitations
- 2016Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphologycitations
- 2016Parameters responsible for the degradation of CH3NH3PbI3-based solar cells on polymer substratescitations
- 2016Enhancing the optoelectronic performance of perovskite solar cells via a textured CH3NH3PbI3 morphologycitations
- 2016Highly dispersed cobalt oxide on TaON as efficient photoanodes for long-term solar water splittingcitations
- 2014Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cellscitations
- 2012Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidationcitations
- 2007Recognition of thymine and related nucleosides by a ZnII-cyclen complex bearing a ferrocenyl pendant
- 2007Modification of mesoporous TiO2 electrodes by surface treatment with titanium(IV), indium(III) and zirconium(IV) oxide precursors: preparation, characterization and photovoltaic performance in dye-sensitized nanocrystalline solar cells
- 2005BaTiO3-coated TiO2 working electrodes for use in dye-sensitised solar cells
- 2000Experimental and theoretical investigations of the effect of deprotonation on electronic spectra and reversible potentials of photovoltaic sensitizerscitations
Places of action
Organizations | Location | People |
---|
article
Recognition of thymine and related nucleosides by a ZnII-cyclen complex bearing a ferrocenyl pendant
Abstract
A cyclen derivative bearing a ferrocenyl arm (L) and a series of its Zn-II complexes [ZnL(OH2)][ClO4](2) (C1), [ZnL(OH)][ClO4] (C2), and [ZnL(Cl)][ClO4]center dot CH3CN (C3) (cyclen = 1,4,7,10-tetraazacyclododecane, L = 1-(ferrocenemethyl)-1,4,7,10-tetraazacyclododecane) have been prepared and characterized spectroscopically. An X-ray structure determination confirmed the formation of complex C1 and revealed that the coordinated water participates in hydrogen bonding with the perchlorate counter ions. The pK(a) value for deprotonation of the water molecule determined by potentiometric titration was found to be 7.36 +/- 0.09 at 25 degrees C and I = 0.1 (KNO3). The possibility of using complex C1 as a potential sensor for thymine derivatives in aqueous solution has been examined. Shifts in the H-1 and C-13 NMR resonances showed the binding occurred with thymine (T) and two thymine derivatives, thymidine (dT) and thymidine 5 -monophosphate (TMP2-). Significant shifts of the nu(CO) and nu(CC) vibrations of the thymine derivatives were also observed via IR spectroscopy upon complexation with the receptor. The thymine adduct, [ZnL(thymine anion)][ClO4]center dot 2H(2)O (C4), has been crystallized and characterized. The X-ray structure of C4 confirmed the thymine binding to the receptor, and the short Zn-N(thymine) distance of 1.975(5) A indicated clearly that the ferrocenyl arm does not affect the complexation of the DNA base. In contrast to the large spectral changes, electrochemical studies showed a small shift of the reversible potential of the redox couple Fc(+)/Fc (Fc = ferrocene) and subtle changes in voltammetry upon the addition of an excess of dT, TMP2-, and guanine (dG) at physiological pH, indicating the level of interaction is similar in both Fc and Fc(+) forms.