Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Morgan, Katrina Anne

  • Google
  • 14
  • 50
  • 119

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2023Expanding the transmission window of visible-MWIR chalcogenide glasses by silicon nitride dopingcitations
  • 2023Conformal CVD-grown MoS2 on three-dimensional woodpile photonic crystals for photonic bandgap engineering4citations
  • 2022Low energy switching of phase change materials using a 2D thermal boundary layer11citations
  • 2021Manufacturing of GLS-Se glass rods and structured preforms by extrusion for optical fiber drawing for the IR region2citations
  • 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)citations
  • 2019High-throughput physical vapour deposition flexible thermoelectric generators41citations
  • 2018Fabrication of micro-scale fracture specimens for nuclear applications by direct laser writingcitations
  • 2017Structural modification of Ga-La-S glass for a new family of chalcogenides2citations
  • 2017Wafer scale pre-patterned ALD MoS2 FETscitations
  • 2017Chemical vapor deposition and Van der Waals epitaxy for wafer-scale emerging 2D transition metal di-chalcogenidescitations
  • 2017Selection by current compliance of negative and positive bipolar resistive switching behaviour in ZrO2−x/ZrO2 bilayer memory22citations
  • 2016Forming-free resistive switching of tunable ZnO films grown by atomic layer deposition30citations
  • 2016Advanced CVD technology for emerging transition metal di-chalcogenidescitations
  • 2014The effect of atomic layer deposition temperature on switching properties of HfOx resistive RAM devices7citations

Places of action

Chart of shared publication
Craig, Christopher
6 / 37 shared
Xu, Dichu
1 / 7 shared
Archer, Ellis
1 / 1 shared
Zeimpekis, Ioannis
8 / 24 shared
Huang, Chung-Che
7 / 38 shared
Chen, Lifeng
1 / 2 shared
Taverne, Mike P. C.
2 / 2 shared
Hewak, Daniel W.
9 / 80 shared
Chen, Yu-Shao Jacky
1 / 1 shared
Rarity, John G.
1 / 1 shared
Awachi, Habib
1 / 1 shared
Rezaie, Daniel
1 / 1 shared
Palakkool, Nadira Meethale
1 / 1 shared
Zheng, Xu
1 / 3 shared
Ho, Y.-L. Daniel
1 / 1 shared
Wang, Yunzheng
1 / 2 shared
Simpson, Robert E.
1 / 6 shared
Teo, Siew Lang
1 / 2 shared
Ning, Jing
1 / 5 shared
Bosman, Michel
1 / 6 shared
Teo, Ting Yu
1 / 2 shared
Guzman, Fernando
2 / 5 shared
Ravagli, Andrea
4 / 19 shared
Moog, Bruno Jean
1 / 4 shared
Adam, Henry Lewis
1 / 1 shared
Feng, Zhuo
2 / 4 shared
Weatherby, Edwin
1 / 4 shared
Ghadah, Abdulrahman Alzaidy
1 / 2 shared
Bruno, Jean Moog
1 / 2 shared
Aspiotis, Nikolaos
4 / 18 shared
Delaney, Matthew
1 / 2 shared
Tang, Tian
1 / 2 shared
Barker, Clara
1 / 2 shared
Yarmolich, Dmitry
1 / 1 shared
Assender, Hazel
1 / 1 shared
Yao, Jin
1 / 5 shared
Zeng, Xu
1 / 1 shared
Mostafavi, Mahmoud
1 / 58 shared
Ho, Ying-Lung Daniel
1 / 1 shared
Shterenlikht, Anton
1 / 23 shared
Aghajani, Armen
1 / 2 shared
Weatherby, Ed
3 / 6 shared
Alzaidy, Ghadah
2 / 3 shared
Cui, Qingsong
2 / 2 shared
Yan, Xingzhao
1 / 1 shared
Huang, Ruomeng
3 / 25 shared
De Groot, Cornelis
3 / 41 shared
Charlton, Martin D. B.
1 / 7 shared
Sun, Sun Kai
1 / 1 shared
Kiang, Kian
1 / 1 shared
Chart of publication period
2023
2022
2021
2019
2018
2017
2016
2014

Co-Authors (by relevance)

  • Craig, Christopher
  • Xu, Dichu
  • Archer, Ellis
  • Zeimpekis, Ioannis
  • Huang, Chung-Che
  • Chen, Lifeng
  • Taverne, Mike P. C.
  • Hewak, Daniel W.
  • Chen, Yu-Shao Jacky
  • Rarity, John G.
  • Awachi, Habib
  • Rezaie, Daniel
  • Palakkool, Nadira Meethale
  • Zheng, Xu
  • Ho, Y.-L. Daniel
  • Wang, Yunzheng
  • Simpson, Robert E.
  • Teo, Siew Lang
  • Ning, Jing
  • Bosman, Michel
  • Teo, Ting Yu
  • Guzman, Fernando
  • Ravagli, Andrea
  • Moog, Bruno Jean
  • Adam, Henry Lewis
  • Feng, Zhuo
  • Weatherby, Edwin
  • Ghadah, Abdulrahman Alzaidy
  • Bruno, Jean Moog
  • Aspiotis, Nikolaos
  • Delaney, Matthew
  • Tang, Tian
  • Barker, Clara
  • Yarmolich, Dmitry
  • Assender, Hazel
  • Yao, Jin
  • Zeng, Xu
  • Mostafavi, Mahmoud
  • Ho, Ying-Lung Daniel
  • Shterenlikht, Anton
  • Aghajani, Armen
  • Weatherby, Ed
  • Alzaidy, Ghadah
  • Cui, Qingsong
  • Yan, Xingzhao
  • Huang, Ruomeng
  • De Groot, Cornelis
  • Charlton, Martin D. B.
  • Sun, Sun Kai
  • Kiang, Kian
OrganizationsLocationPeople

conferencepaper

Advanced CVD technology for emerging transition metal di-chalcogenides

  • Huang, Chung-Che
  • Morgan, Katrina Anne
  • Hewak, Daniel W.
  • Alzaidy, Ghadah
  • Aspiotis, Nikolaos
  • Cui, Qingsong
  • Weatherby, Ed
Abstract

Transition metal di-chalcogenides (TMDCs) such as MoS2, MoSe2, WS2 and WSe2 have become a noteworthy complimentary material to graphene sharing many of its properties. They may however offer properties that are unattainable in graphene since TMDCs offer a tunable bandgap through both composition and number of layers. This has led to use of TMDCs in applications such as transistors, photodetectors, electroluminescent and bio-sensing devices. In addition, chalcogenide thin films such as CuInGaSe2 and CdTe have been commercialized for photovoltaic application, however the search for low cost, non-toxic and earth abundant high efficiency absorbing materials remains under investigation. Sn-S, a p-type semiconductor with a band gap of ~1.3 eV and the sort after aforementioned properties, has attracted great interest recently. Chemical vapour deposition (CVD) technology has the advantage of offering conformal, scalable, and controllable thin film growth on a variety of different substrates. In this talk we describe our recent development in TMDCs materials using CVD technology and discuss their potential applications.

Topics
  • thin film
  • chemical vapor deposition
  • p-type semiconductor