Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Christensen, Thomas Højlund

  • Google
  • 6
  • 14
  • 80

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2015Environmental Impacts Assessment of Recycling of Construction and Demolition Wastecitations
  • 2011Recycling of Glasscitations
  • 2009Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions49citations
  • 2003Re-use of stabilised flue gas ashes from solid waste incineration in cement-treated base layers for pavementscitations
  • 2001High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration31citations
  • 2000Thermal Treatment of Iron Oxide Stabilized APC Residues from Waste Incineration and the Effect on Heavy Metal Bindingcitations

Places of action

Chart of shared publication
Butera, Stefania
1 / 1 shared
Astrup, Thomas Fruergaard
1 / 3 shared
Damgaard, Anders
1 / 3 shared
Merrild, Hanna Kristina
1 / 1 shared
Jensen, Dorthe Lærke
2 / 2 shared
Bager, D. H.
1 / 2 shared
Cai, Zuansi
1 / 4 shared
Mogensen, E. P. B.
1 / 1 shared
Lundtorp, Kasper
1 / 1 shared
Sørensen, Mette Abildgaard
2 / 2 shared
Bender-Koch, C.
1 / 1 shared
Bordia, R.
1 / 3 shared
Benjamin, M. M.
1 / 1 shared
Stackpoole, M.
1 / 1 shared
Chart of publication period
2015
2011
2009
2003
2001
2000

Co-Authors (by relevance)

  • Butera, Stefania
  • Astrup, Thomas Fruergaard
  • Damgaard, Anders
  • Merrild, Hanna Kristina
  • Jensen, Dorthe Lærke
  • Bager, D. H.
  • Cai, Zuansi
  • Mogensen, E. P. B.
  • Lundtorp, Kasper
  • Sørensen, Mette Abildgaard
  • Bender-Koch, C.
  • Bordia, R.
  • Benjamin, M. M.
  • Stackpoole, M.
OrganizationsLocationPeople

thesis

Environmental Impacts Assessment of Recycling of Construction and Demolition Waste

  • Christensen, Thomas Højlund
  • Butera, Stefania
  • Astrup, Thomas Fruergaard
Abstract

Construction and demolition waste (C&DW) is waste derived from the construction, demolition and renovation of buildings and civil infrastructure. With 900 million tons generated every year in Europe, it is the largest waste stream on the continent. C&DW is mainly constituted of mineral fractions, i.e. soil and stones, concrete, asphalt and masonry, and as such it has the potential to be used as aggregate in the construction sector. A typical application is in an unbound state as filler in road structures. This practice offers evident benefits in terms of resource savings, however it might lead to potential adverse impacts, especially related to the water-borne emission of pollutants, which need to be avoided. This requires first of all an estimation of their magnitude, and so the goal of this PhD is to provide an assessment of potential environmental impacts related to C&DW utilisation. C&DW is characterised by significant variability, especially in terms of leaching. Different levels of Ca, Ba, Cl-, Cr, K, Li, Mg, Na, Sr, Se, Si, SO4 and V are in evidence, depending on the ageing level (and therefore on the extent of carbonation) as well as the content of masonry. Both aspects may be optimised by appropriate measures within the C&DW waste management system, for instance by promoting source segregation of the concrete fraction stream or actively pursuing its carbonation. We found that leaching of Se, and to a lower extent Cr, Sb, SO4, Cl-, appears critical for C&DW in relation to existing national and European regulations. Cr mainly exists in C&DW leachates as anionic species, which may be interpreted as hexavalent species (mainly chromate). Despite being banned several decades ago, PCBs are still found in C&DW and in concrete raw materials, albeit in low, non-critical concentrations. This highlights their ubiquitous environmental presence. Several methods may be used to investigate leaching from granular C&DW, one of which is percolation tests. Compared to down-flow lysimeters with uncrushed C&DW, this study found that the use of standard up-flow columns, with materials below 4mm in particle size, may introduce differences especially in terms of pH, which in turn may affect the leaching of Al, As, Ba, Cu, DOC, Mg, Mn, P, Pb, Sb, Se, Si and Zn as a consequence of the crushing process, which results in the exposure of fresh, un-carbonated surfaces. However, when the scope involves quantifying cumulative release, standard up-flow columns may be considered appropriate, while for estimating early concentrations, relying on standard up-flow columns may be more problematic (e.g. Al, As, Cu, DOC, Mg, Mn, P, Pb, Sb, Se, Si and Zn), and the relationship between testing conditions and field conditions should be evaluated critically.Owing to its high toxicity and significant mobility, especially at high pH levels, Cr(VI) is one of the elements of concern found in C&DW leachates. Its fate in the sub-soil below road applications was assessed experimentally, and its vertical migration was then predicted through a model. Interactions with sub-soil particles, namely reduction to immobile Cr(III), are responsible for the retention of Cr(VI) in the first 70 cm of sub-soil below the C&DW sub-base. Temperate climates might inhibit the already slow reduction kinetics, resulting in Cr(VI) migration up to 2 m. The same case applies in situations characterised by high infiltration rates, such as unpaved roads, cracked asphalt cover or heavy rain events. By using holistic tools such as life cycle assessment (LCA) a general evaluation of the environmental consequences of C&DW utilisation system was provided. Although for most impact categories C&DW utilisation in road sub-bases does not provide environmental savings in absolute terms, it is generally less hazardous than when being landfilled (excluding toxicity impacts). On the other hand, landfilling appears better than C&DW utilisation when considering toxicity categories, owing to lower leaching in landfill scenarios over a 100-year time horizon. Oxyanions play a predominant role in leaching impacts, rather than cationic metals, and accurate modelling of Cr(VI) fate is essential to the results, while the heterogeneity of C&DW leachates does not play a crucial role in LCA results. C&DW carbonation leads to a trade-off between reducing global warming impacts and increasing toxic impacts related to the higher leaching of oxyanions. While leaching appears as the major problem relating to C&DW utilisation in LCA terms, uncertainties related to methodological aspects of leaching modelling in LCA should be acknowledged.

Topics
  • impedance spectroscopy
  • mineral
  • surface
  • mobility
  • laser emission spectroscopy
  • leaching
  • aging
  • toxicity