Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Røsjorde, Audun

  • Google
  • 3
  • 7
  • 49

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2014Exergy destruction and losses on four North Sea offshore platforms: A comparative study of the oil and gas processing plants49citations
  • 2013Performance indicators for evaluation of North Sea oil and gas platformscitations
  • 2013Comparative study of the sources of exergy destruction on four North Sea oil and gas platformscitations

Places of action

Chart of shared publication
Ertesvåg, Ivan S.
1 / 1 shared
Elmegaard, Brian
3 / 6 shared
Jøssang, Knut
2 / 2 shared
Kjelstrup, Signe
3 / 5 shared
Voldsund, Mari
3 / 3 shared
He, Wei
1 / 3 shared
Ertesvåg, Ivar Ståle
2 / 2 shared
Chart of publication period
2014
2013

Co-Authors (by relevance)

  • Ertesvåg, Ivan S.
  • Elmegaard, Brian
  • Jøssang, Knut
  • Kjelstrup, Signe
  • Voldsund, Mari
  • He, Wei
  • Ertesvåg, Ivar Ståle
OrganizationsLocationPeople

document

Comparative study of the sources of exergy destruction on four North Sea oil and gas platforms

  • Røsjorde, Audun
  • Ertesvåg, Ivar Ståle
  • Elmegaard, Brian
  • Jøssang, Knut
  • Kjelstrup, Signe
  • Voldsund, Mari
Abstract

In this paper, the oil and gas processing systems on four North Sea offshore platforms are reported and discussed. Sources of exergy destruction are identified and the findings for the different platforms are compared. Different platforms have different working conditions, such as reservoir temperatures and pressures, gas- and water-to-oil ratios in the feed, crude oil properties, product specifications and recovery strategies. These differences imply that some platforms naturally need less power for oil and gas processing than others. Reservoir properties and composition also vary over the lifetime of an oil field, and to maintain the efficiency of an offshore platform is therefore challenging. In practice, variations in the process feed result in the use of control strategies such as anti-surge recycling, which cause additional power consumption and exergy destruction. For all four platforms, more than 27% of the total exergy destruction takes place in the gas treatment section while at least 16% occurs in the production manifold systems. The exact potential for energy savings and for enhancing system performances differ across offshore platforms.However, the results indicate that the largest potential for improvement lie (i) in gas compression systems where large amounts of gas are often compressed and might be recycled to prevent surge, and (ii) in production manifolds where well-streams are depressurised and mixed before being sent to the separation system.

Topics
  • impedance spectroscopy
  • laser emission spectroscopy