Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Harris, Nick

  • Google
  • 11
  • 32
  • 128

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023Vacuum thermoforming for packaging flexible electronics and sensors in e-textiles5citations
  • 2021Surface temperature condition monitoring methods for aerospace turbomachinery: exploring the use of ultrasonic guided waves18citations
  • 2016Electrochemical detection of cupric ions with boron-doped diamond electrode for marine corrosion monitoring19citations
  • 2015Electrochemical detection of cupric ions with boron-doped diamond electrode for corrosion monitoringcitations
  • 2015Screen-printable porous glass: a new material for electrochemical sensors6citations
  • 2013Characterisation of crevice and pit solution chemistries using capillary electrophoresis with contactless conductivity detector9citations
  • 2011HeLa cell transfection using a novel sonoporation system24citations
  • 2010Screen-printed platinum electrodes for measuring crevice corrosion: Nickel aluminium bronze as an examplecitations
  • 2008Performance of a quarter-wavelength particle concentrator39citations
  • 2007Microfluidic system for cell transfection using sonoporation and ultrasonic particle manipulationcitations
  • 2004Acoustic power output measurements for thick-film PZT transducers8citations

Places of action

Chart of shared publication
Komolafe, Abiodun
1 / 9 shared
Beeby, Steve
4 / 45 shared
Valavan, Ashwini
1 / 2 shared
Zaghari, Bahareh
1 / 2 shared
Yule, Lawrence
1 / 1 shared
Hill, Martyn
4 / 11 shared
Stokes, K. R.
2 / 12 shared
Nie, M.
1 / 3 shared
Wood, Robert J. K.
2 / 93 shared
Wharton, Julian A.
3 / 27 shared
Cranny, A.
1 / 1 shared
Neodo, S.
1 / 1 shared
Wood, R. J. K.
1 / 11 shared
Nie, Mengyan
2 / 5 shared
Neodo, Stefano
1 / 3 shared
Cranny, Andy
3 / 3 shared
White, Nm
2 / 23 shared
Stokes, Keith R.
1 / 3 shared
Rodamporn, S.
1 / 1 shared
Boltryk, R. J.
1 / 1 shared
Sanchez-Elsner, T.
1 / 1 shared
Lewis, Adam
1 / 2 shared
Wood, Robert
1 / 6 shared
Nie, Menyang
1 / 1 shared
Stokes, Keith
1 / 6 shared
Cranny, Andrew
1 / 1 shared
Wharton, Julian
1 / 14 shared
Townsend, R. J.
1 / 1 shared
Mcdonnell, M. B.
1 / 2 shared
Rodamporn, Somphop
1 / 1 shared
Chad, John
1 / 1 shared
Brown, Andrew
1 / 6 shared
Chart of publication period
2023
2021
2016
2015
2013
2011
2010
2008
2007
2004

Co-Authors (by relevance)

  • Komolafe, Abiodun
  • Beeby, Steve
  • Valavan, Ashwini
  • Zaghari, Bahareh
  • Yule, Lawrence
  • Hill, Martyn
  • Stokes, K. R.
  • Nie, M.
  • Wood, Robert J. K.
  • Wharton, Julian A.
  • Cranny, A.
  • Neodo, S.
  • Wood, R. J. K.
  • Nie, Mengyan
  • Neodo, Stefano
  • Cranny, Andy
  • White, Nm
  • Stokes, Keith R.
  • Rodamporn, S.
  • Boltryk, R. J.
  • Sanchez-Elsner, T.
  • Lewis, Adam
  • Wood, Robert
  • Nie, Menyang
  • Stokes, Keith
  • Cranny, Andrew
  • Wharton, Julian
  • Townsend, R. J.
  • Mcdonnell, M. B.
  • Rodamporn, Somphop
  • Chad, John
  • Brown, Andrew
OrganizationsLocationPeople

document

Microfluidic system for cell transfection using sonoporation and ultrasonic particle manipulation

  • Rodamporn, Somphop
  • Chad, John
  • Harris, Nick
  • Beeby, Steve
  • Hill, Martyn
  • Brown, Andrew
Abstract

Studies into sonoporation have grown rapidly in biotechnology and medicine in recent years. The use of sonoporation in biotechnology and medicine has potential for enhancing and targeting administration of drugs genes and other therapeutic compounds into the cells. Sonoporation has demonstrated to facilitate efficient gene transfer both in vitro and in vivo. This paper presents a microfluidic system for cells transfection using sonoporation and ultrasonic particle manipulation. The paper presents a theoretical analysis used to design the sonoporation chamber, whilst also enabling ultrasonic particle manipulation using an ultrasonic standing wave. Both the sonoporation and the particle manipulation are achieved using the same piezoelectric transducer (PZT 26) mounted on the micro chamber. The theoretical analysis is based on upon the model for an acoustic particle separator. The resulting design has been implemented in Macor ceramic glass assembly with a chamber size of 6 mm diameter and 750?m thickness. The efficiency of the sonoporation system was determined experimentally by the use of HeLa cells and propidium dye. The transfection rate was determined under a range of sonoporation conditions. The optimal sonoporation parameters will vary depending upon the cell type and purpose. For example, sonoporation typically utilises ultrasonic frequencies of 1 to 3MHz for gene delivery and drug delivery. The experiment results showed a peak cell transfection efficiency of 52.2% at 1.17MHz at 80 Vp-p.

Topics
  • impedance spectroscopy
  • compound
  • experiment
  • glass
  • glass
  • ultrasonic
  • ceramic