Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Scrymgeour, D. A.

  • Google
  • 2
  • 10
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2005Light-induced domain engineering in ferroelectricscitations
  • 2005Light-induced domain engineering in ferroelectricscitations

Places of action

Chart of shared publication
Gopalan, V.
2 / 14 shared
Valdivia, C. E.
2 / 3 shared
Scott, J. G.
2 / 2 shared
Eason, Robert W.
2 / 65 shared
Sones, Collin
1 / 6 shared
Clarke, I. P.
2 / 2 shared
Mailis, S.
1 / 5 shared
Jungk, T.
2 / 3 shared
Soergel, E.
2 / 3 shared
Sones, C. L.
1 / 8 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Gopalan, V.
  • Valdivia, C. E.
  • Scott, J. G.
  • Eason, Robert W.
  • Sones, Collin
  • Clarke, I. P.
  • Mailis, S.
  • Jungk, T.
  • Soergel, E.
  • Sones, C. L.
OrganizationsLocationPeople

booksection

Light-induced domain engineering in ferroelectrics

  • Gopalan, V.
  • Valdivia, C. E.
  • Scott, J. G.
  • Scrymgeour, D. A.
  • Eason, Robert W.
  • Sones, Collin
  • Clarke, I. P.
  • Mailis, S.
  • Jungk, T.
  • Soergel, E.
Abstract

Fabrication of periodically inverted domain patterns in ferroelectric materials such as lithium niobate has been widely researched for the realisation of applications as diverse as quasi-phase-matched (QPM) non-linear devices, electro-optic Bragg deflectors, photonic band-gap structures, and piezoelectric devices such as micro-resonators, atom traps and micro-cavities. In order to overcome the limitations associated with E-field poling, we have been investigating the feasibility of a relatively simple single-step technique, which exploits the interaction of intense laser light with ferroelectric lithium niobate to engineer domains at micron and sub-micron scale-lengths. Some light-assisted poling experiments which take advantage of the ultraviolet light-induced transient change in the coercive field of the illuminated ferroelectric material to transfer a patterned light distribution into an equivalent domain structure in bulk crystals have already been reported for lithium tantalate and lithium niobate crystals. In this letter we report a direct optical poling technique that employs pulsed ultraviolet laser light to induce surface domain inversion in undoped lithium niobate in a single step. We further characterize the laser modified domain manipulated crystals using differential chemical etching and scanning force microscopy (SFM).

Topics
  • surface
  • phase
  • experiment
  • etching
  • Lithium
  • microscopy