People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolosov, Oleg Victor
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2022Low Thermal Conductivity in Franckeite Heterostructurescitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2021Thermoelectric voltage modulation via backgate doping in graphene nanoconstrictions studied with STGM
- 2021SCANNING THERMAL MICROSCOPY OF 2D MATERIALS IN HIGH VACUUM ENVIRONMENT
- 2020Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Filmscitations
- 2020Direct mapping of local Seebeck coefficient in 2D material nanostructures via scanning thermal gate microscopy
- 2019Visualisation of subsurface defects in van-der-Waals heterostructures via 3D SPM mapping
- 2018Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictionscitations
- 2018Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiationcitations
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in aircitations
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in air
- 2017Correlation of nano-scale electrical and topographical mapping of buried nanoscale semiconductor junctions
- 2017Imaging subsurface defects in WS2/WSe2 CVD flakes via Ultrasonic Force Microscopies
- 2017Subsurface imaging of stacking faults and dislocations in WS2 CVD grown flakes via Ultrasonic and Heterodyne Force Microscopy
- 2017Characterisation of local thermal properties in nanoscale structures by scanning thermal microscopy
- 2017Subsurface imaging of two-dimensional materials at the nanoscalecitations
- 2015Nanometre scale 3D nanomechanical imaging of semiconductor structures from few nm to sub-micrometre depthscitations
- 2014Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxycitations
- 2014Nanomechanical morphology of amorphous, transition, and crystalline domains in phase change memory thin filmscitations
- 2014Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopycitations
- 2014How Deep Ultrasonic and Heterodyne Force Microscopies Can Look at the Nanostructure of 2D Materials?
- 2013Atomic force acoustic microscopy
- 2005Application specific integrated circuitry for controlling analysis of a fluid
- 2005Multiparameteric oil condition sensor based on the tuning fork technology for automotive applicationscitations
- 2004Application specific integrated circuitry for controlling analysis of a fluid
- 2003Local probing of thermal properties at submicron depths with megahertz photothermal vibrations.citations
- 2002Nanometer-scale mechanical imaging of aluminum damascene interconnect structures in a low-dielectric-constant polymer.citations
- 2000Nanoscale elastic imaging of aluminum/low-k dielectric interconnect structures
Places of action
Organizations | Location | People |
---|
conferencepaper
Correlation of nano-scale electrical and topographical mapping of buried nanoscale semiconductor junctions
Abstract
In recent years, germanium tin (Ge0.9Sn0.1) group-IV semiconductor materials attracted interest as promising candidates for inclusion in optoelectronic devices. They provide a possible route for realising direct-bandgap semiconductors with increasing Sn content [1], potentially allowing to create LED in a non iii-v semiconductor materials. With the continuing demand for miniaturisation in modern electronic devices, there is a linked demand for new characterisation techniques operating in the nanoscale regime.<br/><br/>Here we show that by combining an Ar-ion cross-sectioning technique and a customised scanning probe microscopy (SPM), one can extract and explore the electrical properties of the subsurface Ge0.9Sn0.1 structures with a resolution of ~30 nm. This high spatial resolution current mapping is needed to fully understand the nanoscale mechanisms of electrical transport these complexly structured semiconductor nanostructures and assist in the development of new electronic nano-devices.<br/><br/> Beam-Exit X-section Polishing (BEXP) [2], Fig. 1 (a), was used to form high quality cross sections of the layered Ge0.9Sn0.1 samples enabling direct access with scanning spreading resistance microscopy (SSRM) electrical mapping. Our SSRM is based on a conventional SPM system (Bruker Multimode with Nanoscope 4a), with a highly-electrically conductive diamond probe and custom probe-signal pre-amplifier and signal access capabilities. The setup enabled the measurements and interpretation of the nanoscale electrical transport properties and mapping of spreading resistance of the subsurface layers under ambient environment conditions.<br/><br/>In this paper we report nanoscale measurements on 100 and 200 nm layer of Ge0.9Sn0.1 on the gradient Ge virtual substrates (GeVS) MBE grown on the Si wafer. We obtained SSRM images, as well as captured (I-V) curves with and without illumination.<br/><br/>The annealing of the GeVS allowed low density of the defects immediately under the top GeSnx layer. SSRM allowed to observe that subsequent annealing step of the total structure provide notable variation of the conductivity of the GeSnx layer, as well as to uncover the high defect density layer of the GeVS immediately above Si substrate. These were confirmed by the concurrent nanomechanical mapping via ultrasonic force microscopy (UFM). In conclusion, combination of precise sectioning via BEXP and subsequent SSRM imaging that was demonstrated for the first time in this paper, will be a powerful tool for the investigation of the multilayer semiconductor heterostructures.