People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Torah, Russel N.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2020Influence of textile structure on the wearability of printed e-textiles
- 2020Reliable UHF long-range textile-integrated RFID tag based on a compact flexible antenna filamentcitations
- 2018Energy-harvesting materials for smart fabrics and textilescitations
- 2018Solution processed organic solar cells on textilescitations
- 2017Flexible piezoelectric nano-composite films for kinetic energy harvesting from textilescitations
- 2016Fully spray-coated organic solar cells on woven polyester cotton fabrics for wearable energy harvesting applicationscitations
- 2015Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substratescitations
- 2014Dielectric studies of polystyrene-based, high-permittivity composite systemscitations
- 2014Flexible screen printed thick film thermoelectric generator with reduced material resistivitycitations
- 2014Barium titanate and the dielectric response of polystyrene-based composites
- 2005An improved thick-film piezoelectric material by powder blending and enhanced processing parameters
- 2004Improving the piezoelectric properties of thick-film PZTcitations
- 2004Improving the piezoelectric properties of thick-film PZT: the influence of paste composition, powder milling process and electrode materialcitations
- 2003Screen Printed PZT Thick Films Using Composite Film Technology
- 2003A study of powder size combinations for improving piezoelectric properties of PZT thick-film devices
- 2002A study of the effect of powder preparation and milling process on the piezoelectric properties of thick-film PZT
Places of action
Organizations | Location | People |
---|
article
An improved thick-film piezoelectric material by powder blending and enhanced processing parameters
Abstract
This paper details improvements of the d33 coefficient for thick-film lead zirconate titanate (PZT) layers. In particular, the effect of blending ball and attritor milled powders has been investigated. Mathematical modeling of the film structure has produced initial experimental values for powder combination percentages. A range of paste formulations between 8:1 and 2:1 ball to attritor milled PZT powders by weight have been mixed into a screen-printable paste. Each paste contains 10% by weight of lead borosilicate glass and an appropriate quantity of solvent to formulate a screen printable thixotropic paste. A d33 of 63.5 pC/N was obtained with a combination of 4:1 ball milled to attritor milled powder by weight. The improved paste combines the high d33 values of ball and the consistency of attritor milled powder. The measured d33 coefficient was further improved to 131 pC/N by increasing the furnace firing pro-file to 1000