People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schaff, William J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2011Effect of charged dislocation scattering on electrical and electrothermal transport in n-type InNcitations
- 2009Stacking faults and phase changes in Mg-doped InGaN grown on Sicitations
- 2008InGaN thin films grown by ENABLE and MBE techniques on silicon substrates
- 2004Group III-nitride alloys as photovoltaic materialscitations
- 2003Narrow bandgap group III-nitride alloyscitations
Places of action
Organizations | Location | People |
---|
document
InGaN thin films grown by ENABLE and MBE techniques on silicon substrates
Abstract
The prospect of developing electronic and optoelectronic devices, including solar cells, that utilize the wide range of energy gaps of InGaN has led to a considerable research interest in the electronic and optical properties of InN and In-rich nitride alloys. Recently, significant progress has been achieved in the growth and doping of InGaN over the entire composition range. In this paper we present structural, optical, and electrical characterization results from InGaN films grown on Si (111) wafers. The films were grown over a large composition range by both molecular beam epitaxy (MBE) and the newly developed "energetic neutral atomic-beam lithography & epitaxy" (ENABLE) techniques. ENABLE utilizes a collimated beam of ∼2 eV nitrogen atoms as the active species which are reacted with thermally evaporated Ga and In metals. The technique provides a larger N atom flux compared to MBE and reduces the need for high substrate temperatures, making isothermal growth over the entire InGaN alloy composition range possible. Electrical characteristics of the junctions between n- and p-type InGaN films and n- and p-type Si substrates were measured and compared with theoretical predictions based on the band edge alignment between those two materials. The predicted existence of a low resistance tunnel junction between p-type Si and n-type InGaN was experimentally confirmed. © 2008 Materials Research Society.