People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hosier, Ian L.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021Enhanced boron nitride/polyolefin blends for high voltage applicationscitations
- 2019High performance polymer blend systems for HVDC applicationscitations
- 2018Polymer blend systems for HVDC cable applicationscitations
- 2018Enhanced electrical and thermal rating materials for renewable power cable connectionscitations
- 2017The effects of water on the dielectric properties of aluminum based nanocompositescitations
- 2017On the effect of functionalizer chain length and water content in polyethylene/silica nanocomposites: Part II – Charge Transportcitations
- 2017On the effect of functionalizer chain length and water content in polyethylene/silica nanocompositescitations
- 2017The effects of water on the dielectric properties of silicon based nanocompositescitations
- 2015The effects of surface hydroxyl groups in polyethylene-silica nanocomposites
- 2014Dielectric studies of polystyrene-based, high-permittivity composite systemscitations
- 2014Effect of water absorption on dielectric properties of nano-silica/polyethylene compositescitations
- 2014Barium titanate and the dielectric response of polystyrene-based composites
- 2013On the dielectric response of silica-based polyethylene nanocompositescitations
- 2013On Nanosilica Surface Functionalization Using Different Aliphatic Chain Length Silane Coupling Agents
- 2013Absorption Current Behaviour of Polyethylene/Silica Nanocomposites
- 2013Permittivity mismatch and its influence on ramp breakdown performance
- 2010An investigation of the potential of ethylene vinyl acetate/polyethylene blends for use in recyclable high voltage cable insulation systems
- 2004Lamellar morphology of random metallocene propylene copolymers studied by atomic force microscopy
- 2003Formation of the alpha and gamma polymorphs in random metallocene-propylene copolymers. Effect of concentration and type of comonomer
- 2000A study of the morphologies and growth kinetics of three monodisperse n-alkanes: C122H246, C162H326 and C246H494
Places of action
Organizations | Location | People |
---|
article
A study of the morphologies and growth kinetics of three monodisperse n-alkanes: C122H246, C162H326 and C246H494
Abstract
An optical and electron microscopic study has been made of three monodisperse n-alkanes crystallising as extended-chain lamellae. All showed similar morphologies at the same supercooling and the same progressive changes of texture with crystallization temperature. This is, with increasing supercooling, from a morphology composed essentially of individual lamellae arranged in parallel stacks and radiating from common nuclei through coarse, somewhat branched microstructures whose parallel stacks diverge, to finer, more-branched pseudo-spherulitic textures. Quenched, once-folded, C-246 shows a random spherulitic texture with a dominant/subsidiary microstructure as for polymeric systems. The kinetics of extended-chain growth increase linearly with supercooling, as predicted by Hoffman, except for a local dip at the onset of lamellar branching. This new phenomenon occurs within one quantized state of lamellar thickness in contrast to 'self-poisoning' when once-folded forms give way to extended-chain crystallization. When dominant lamellae are no longer parallel but diverge, their mutual splaying angles increase with supercooling for all the three n-alkanes studied. The values are less, for the same supercooling, for the longer homologues with their thicker lamellae. This behaviour is as expected of transient ciliation due to the excess of molecular length over that of the secondary nucleus and thereby reinforces previous evidence demonstrating the responsibility of ciliation for spherulitic development in polymers.