Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Esteso, P.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2003Formation of the alpha and gamma polymorphs in random metallocene-propylene copolymers. Effect of concentration and type of comonomercitations

Places of action

Chart of shared publication
Alamo, R. G.
1 / 3 shared
Isasi, J. R.
1 / 1 shared
Hosier, Ian L.
1 / 20 shared
Mandelkern, L.
1 / 1 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Alamo, R. G.
  • Isasi, J. R.
  • Hosier, Ian L.
  • Mandelkern, L.
OrganizationsLocationPeople

article

Formation of the alpha and gamma polymorphs in random metallocene-propylene copolymers. Effect of concentration and type of comonomer

  • Alamo, R. G.
  • Isasi, J. R.
  • Hosier, Ian L.
  • Esteso, P.
  • Mandelkern, L.
Abstract

Four sets of random propylene-based copolymers with 1-10 mol % of ethylene, 1-butene, 1-hexene, or 1-octene as co-units, synthesized with the same metallocene catalyst, were investigated by differential scanning calorimetry and wide-angle X-ray scattering following rapid and isothermal crystallization. Parameters related to defect concentration, defect type, and microstructure and thermodynamic and kinetic factors were evaluated as to their role in developing the gamma polymorph. The effect of the comonomer in enhancing the fractional content of the gamma polymorph is akin to the role of defects in the homo-poly(propylene) chain. However, differences in the partitioning of the comonomer between the crystalline and noncrystalline regions leads to contents of the gamma phase that differ among the copolymers at any given crystallization temperature. Qualitatively, these differences can be used to assess the degree to which a counit participates in the crystallite. The experimental results suggest that there is no discrimination of the defects that enter the crystal lattice (stereo, regio, ethylene, or butylene units) between the alpha or gamma crystallites. The results with copolymers establish that the bases that lead to the formation of the gamma polymorph are the same for homo-poly(propylene) and its copolymers.

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • defect
  • differential scanning calorimetry
  • random
  • copolymer
  • crystallization
  • wide-angle X-ray scattering
  • crystalline lattice
  • crystallization temperature