People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hosier, Ian L.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021Enhanced boron nitride/polyolefin blends for high voltage applicationscitations
- 2019High performance polymer blend systems for HVDC applicationscitations
- 2018Polymer blend systems for HVDC cable applicationscitations
- 2018Enhanced electrical and thermal rating materials for renewable power cable connectionscitations
- 2017The effects of water on the dielectric properties of aluminum based nanocompositescitations
- 2017On the effect of functionalizer chain length and water content in polyethylene/silica nanocomposites: Part II – Charge Transportcitations
- 2017On the effect of functionalizer chain length and water content in polyethylene/silica nanocompositescitations
- 2017The effects of water on the dielectric properties of silicon based nanocompositescitations
- 2015The effects of surface hydroxyl groups in polyethylene-silica nanocomposites
- 2014Dielectric studies of polystyrene-based, high-permittivity composite systemscitations
- 2014Effect of water absorption on dielectric properties of nano-silica/polyethylene compositescitations
- 2014Barium titanate and the dielectric response of polystyrene-based composites
- 2013On the dielectric response of silica-based polyethylene nanocompositescitations
- 2013On Nanosilica Surface Functionalization Using Different Aliphatic Chain Length Silane Coupling Agents
- 2013Absorption Current Behaviour of Polyethylene/Silica Nanocomposites
- 2013Permittivity mismatch and its influence on ramp breakdown performance
- 2010An investigation of the potential of ethylene vinyl acetate/polyethylene blends for use in recyclable high voltage cable insulation systems
- 2004Lamellar morphology of random metallocene propylene copolymers studied by atomic force microscopy
- 2003Formation of the alpha and gamma polymorphs in random metallocene-propylene copolymers. Effect of concentration and type of comonomer
- 2000A study of the morphologies and growth kinetics of three monodisperse n-alkanes: C122H246, C162H326 and C246H494
Places of action
Organizations | Location | People |
---|
conferencepaper
The effects of surface hydroxyl groups in polyethylene-silica nanocomposites
Abstract
Logically, the surface chemistry of filler particles must be a key factor that governs how they interact with a polymer matrix, determining for example, how strongly the particles are bound into the matrix and how easy or difficult it is to achieve a homogenous dispersion of filler particles. This second point is surely one of the most basic challenges when producing a nanocomposite (poor dispersion is frequently stated as the cause of undesirable results). Many attempts have been made to modify the surface chemistry of filler particles through surface functionalization. Typically, this is achieved by chemically attaching polymer chains to the surface of the filler particles. In this paper we try a more direct approach; the surface chemistry of silica nanoparticles is modified by processing them at high temperature. This procedure removes hydroxyl groups from the surface of the filler particles, leaving siloxane groups which are stable at room temperature. Polyethylene composites were produced using both “as delivered” and high temperature processed nanosilica. After heat treatment the particles become hydrophobic which reduces the propensity for water uptake in the resulting nanocomposite and significantly modifies the dielectric response of the material.