Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Virtanen, Suvi

  • Google
  • 12
  • 52
  • 302

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2019Understanding the cross-linking reactions in highly oxidized graphene/epoxy nanocomposite systems48citations
  • 2016Dielectric breakdown strength and electrical conductivity of low density polyethylene octylnanosilica compositecitations
  • 2015Large-area dielectric breakdown performance of polymer films:Part II: Interdependence of filler content, processing and breakdown performance in polypropylene-silica nanocomposites38citations
  • 2015Bimodal dielectric nanoparticles and nanocompositescitations
  • 2015Balanced nanocomposite thermosetting materials for HVDC and AC applicationscitations
  • 2014Structure and dielectric breakdown strength of nano calcium carbonate/polypropylene composites23citations
  • 2014Improved dielectric breakdown strength using bimodal functionalized silica nanoparticlescitations
  • 2014Dielectric breakdown strength of epoxy bimodal-polymer-brush-grafted core functionalized silica nanocomposites77citations
  • 2014Influence of low amounts of nanostructured silica and calcium carbonate fillers on the large-area dielectric breakdown performance of bi-axially oriented polypropylene5citations
  • 2013Structural studies of dielectric polymer nanocompositescitations
  • 2011Characterization of octamethylsilsesquioxane (CH3)8Si8O12 fillers in polypropene matrixcitations
  • 2010Dielectric properties and partial discharge endurance of polypropylene-silica nanocomposite111citations

Places of action

Chart of shared publication
Andritsch, Thomas
1 / 70 shared
Vryonis, Orestis
1 / 19 shared
Vaughan, Alun S.
1 / 70 shared
Lewin, Pl
1 / 32 shared
Saiz, Fernan
1 / 2 shared
Yang, Lupeng
1 / 1 shared
Quirke, Nick
1 / 2 shared
Vaughan, Alun
1 / 14 shared
Pettersson, Mika
4 / 8 shared
Lahti, Kari
2 / 76 shared
Karttunen, Mikko
5 / 42 shared
Rytöluoto, Ilkka
2 / 68 shared
Koponen, Matti
2 / 7 shared
Hillborg, Henrik
2 / 4 shared
Schadler, Linda S.
2 / 5 shared
Zhao, Su
2 / 3 shared
Nelson, J. Keith
2 / 4 shared
Krentz, Timothy M.
2 / 2 shared
Benicewicz, Brian C.
1 / 2 shared
Bell, Michael
2 / 2 shared
Vaughan, A. S.
1 / 18 shared
Coles, S. R.
1 / 1 shared
Bon, S. A. F.
1 / 2 shared
Perrot, F.
1 / 2 shared
Medlam, J. A.
1 / 1 shared
Baker, P.
1 / 13 shared
Freebody, N. A.
1 / 5 shared
Szkoda-Giannaki, I.
1 / 1 shared
Stevens, G. C.
1 / 3 shared
Hyde, A.
1 / 1 shared
Kannus, Kari
2 / 5 shared
Pelto, Jani
2 / 30 shared
Ahonen, Susanna
2 / 2 shared
Ranta, Hannes
1 / 1 shared
Benicewicz, B.
1 / 1 shared
Bell, M. H.
1 / 1 shared
Krentz, T.
1 / 1 shared
Schadler, L. S.
1 / 6 shared
Benicewicz, Brian
1 / 3 shared
Kortelainen, Tommi
1 / 1 shared
Arola, Eero
1 / 1 shared
Lahtinen, Manu
1 / 14 shared
Koivu, Viivi
1 / 1 shared
Kortet, Satu
1 / 5 shared
Takala, M.
1 / 3 shared
Koivu, V.
1 / 1 shared
Nevalainen, P.
1 / 3 shared
Kannus, K.
1 / 3 shared
Sonerud, B.
1 / 2 shared
Pakonen, P.
1 / 1 shared
Ranta, H.
1 / 2 shared
Pettersson, M.
1 / 4 shared
Chart of publication period
2019
2016
2015
2014
2013
2011
2010

Co-Authors (by relevance)

  • Andritsch, Thomas
  • Vryonis, Orestis
  • Vaughan, Alun S.
  • Lewin, Pl
  • Saiz, Fernan
  • Yang, Lupeng
  • Quirke, Nick
  • Vaughan, Alun
  • Pettersson, Mika
  • Lahti, Kari
  • Karttunen, Mikko
  • Rytöluoto, Ilkka
  • Koponen, Matti
  • Hillborg, Henrik
  • Schadler, Linda S.
  • Zhao, Su
  • Nelson, J. Keith
  • Krentz, Timothy M.
  • Benicewicz, Brian C.
  • Bell, Michael
  • Vaughan, A. S.
  • Coles, S. R.
  • Bon, S. A. F.
  • Perrot, F.
  • Medlam, J. A.
  • Baker, P.
  • Freebody, N. A.
  • Szkoda-Giannaki, I.
  • Stevens, G. C.
  • Hyde, A.
  • Kannus, Kari
  • Pelto, Jani
  • Ahonen, Susanna
  • Ranta, Hannes
  • Benicewicz, B.
  • Bell, M. H.
  • Krentz, T.
  • Schadler, L. S.
  • Benicewicz, Brian
  • Kortelainen, Tommi
  • Arola, Eero
  • Lahtinen, Manu
  • Koivu, Viivi
  • Kortet, Satu
  • Takala, M.
  • Koivu, V.
  • Nevalainen, P.
  • Kannus, K.
  • Sonerud, B.
  • Pakonen, P.
  • Ranta, H.
  • Pettersson, M.
OrganizationsLocationPeople

thesis

Structural studies of dielectric polymer nanocomposites

  • Virtanen, Suvi
Abstract

A constant need for the development of new and superior materials is always present; for example, a better electrical insulator would enable more efficient use of electrical power. Polymeric nanocomposites, i.e. nanodielectrics, are thought to have unique electrical properties. The basic chemical constitution of a material alone fails to provide an understanding of how desired properties of a material originate or predict the long term behavior of a material. We need to define the structure behind the functionality of a material. To do that, the structure of the material must be studied on several scales. This research was part of the Finnish Funding Agency for Technology and Innovation (TEKES) consortium projects NANOCOM and NANOPOWER. The general objective of these projects was to create truly new theoretical, experimental and practical knowledge of novel polymer nanocomposites to be further developed and finally used both in electrical and electronics insulation technology, as well as in other fields of technology.<br/><br/>Raman imaging was found to be a good tool for studying the structure of the materials: it provides information on the chemical species as well as dispersion of the filler. Alongside traditional confocal Raman imaging, which gives detailed information even at the submicron scale, coarse Raman imaging was used allowing the screening of a large area from a sample which is important for quality control of the composites to be used in industrial scale. <br/><br/>A new synthetic approach was used to afford well-dispersed silica particles with electroactive core functionalization in epoxy in order to study the effect of the charge layer at the interface of nanoparticle and polymer matrix. If the achieved distribution of particles was dense enough, the dielectric breakdown strength (DBS) increased considerably. The demonstrated increase in DBS and permittivity of the material leads to an increase of up to 125% in theoretical capacitive energy storage capability, and this is promising for future applications. These changes in properties are achieved with only 2 wt-% filler loading. Dielectric losses in the frequency range critical to the planned application stayed at the level of unfilled epoxy. This work is the first step towards new type functionalization of filler that offers good dispersion of nanoparticles without using harsh mixing conditions. These preliminary results indicate that the charge layer in the nanoparticle core, alongside a sufficiently dense enough distribution of particles at nanoscale, could be one way to improve dielectric properties of polymer materials.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • polymer
  • strength
  • functionalization
  • dielectric breakdown strength