Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Perrot, F.

  • Google
  • 2
  • 16
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Balanced nanocomposite thermosetting materials for HVDC and AC applicationscitations
  • 2010Dielectric spectroscopy study of thermally-aged extruded model power cables13citations

Places of action

Chart of shared publication
Vaughan, A. S.
1 / 18 shared
Coles, S. R.
1 / 1 shared
Bon, S. A. F.
1 / 2 shared
Virtanen, Suvi
1 / 12 shared
Medlam, J. A.
1 / 1 shared
Baker, P.
1 / 13 shared
Freebody, N. A.
1 / 5 shared
Szkoda-Giannaki, I.
1 / 1 shared
Stevens, G. C.
1 / 3 shared
Hyde, A.
1 / 1 shared
Dissado, L. A.
1 / 6 shared
Liu, T.
1 / 8 shared
Fu, M.
1 / 1 shared
Dodd, S. J.
1 / 6 shared
Nilsson, U. H.
1 / 2 shared
Fothergill, J.
1 / 6 shared
Chart of publication period
2015
2010

Co-Authors (by relevance)

  • Vaughan, A. S.
  • Coles, S. R.
  • Bon, S. A. F.
  • Virtanen, Suvi
  • Medlam, J. A.
  • Baker, P.
  • Freebody, N. A.
  • Szkoda-Giannaki, I.
  • Stevens, G. C.
  • Hyde, A.
  • Dissado, L. A.
  • Liu, T.
  • Fu, M.
  • Dodd, S. J.
  • Nilsson, U. H.
  • Fothergill, J.
OrganizationsLocationPeople

conferencepaper

Balanced nanocomposite thermosetting materials for HVDC and AC applications

  • Vaughan, A. S.
  • Coles, S. R.
  • Bon, S. A. F.
  • Virtanen, Suvi
  • Perrot, F.
  • Medlam, J. A.
  • Baker, P.
  • Freebody, N. A.
  • Szkoda-Giannaki, I.
  • Stevens, G. C.
  • Hyde, A.
Abstract

There is a need to develop materials with controlled electrical resistivity, reduced space charge accumulation, higher thermal conductivity, higher dielectric strength and enhanced voltage endurance to cope with DC stresses in High Voltage Direct Current (HVDC) transmission systems in addition to HVAC requirements. If the balance of properties, performance and process requirements are achieved this may lead to HVDC insulation systems and equipment having a reduced footprint, larger power densities, and greater multi-stress resilience with longer service lifetimes. It reports findings of a project that is engaging this challenge and investigates the development and scaling of new thermoset based nanocomposite electrical insulation materials for HVDC power transmission applications. Some of the results such as increased electrical breakdown strength and reduced electrical conductivity for reactively surface functionalised nanosilica, and increased thermal conductivity for nano boron nitride and their significance in regard to the wider application of these electrical insulation materials are also discussed. With sufficient understanding of these properties, their trade-offs and process requirements it is possible to tailor balanced materials for specific use in HVAC or HVDC components.

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • resistivity
  • nitride
  • strength
  • Boron
  • thermoset
  • thermal conductivity
  • electrical conductivity
  • dielectric strength