People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Quirke, Nick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
conferencepaper
Dielectric breakdown strength and electrical conductivity of low density polyethylene octylnanosilica composite
Abstract
One challenge in studying nanodielectric composites is to produce reliable, reproducible samples. A common strategy to suppress aggregation and make the particles more compatible with the polymer matrix is to modify the nanoparticle surface chemistry but, often, evaluation of the effectiveness of the chosen surface functionalization process can prove difficult. In this paper the emphasis is on feasible ways to monitor the production of silane coupled nanosilica low density polyethylene (LDPE) composites, using Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA). The AC-breakdown properties of the resulting composites is studied and the field dependency of the DC-conductivity is measured and also calculated using a space charge limited conduction (SCLC) model together with densities of states obtained from ab initio calculations. For composites containing 13 wt% of nanosilica, breakdown strengths some 18 % higher than that of the unfilled LDPE were obtained. However, the results are not stable over time. This appears to be related to how extensively the composite is dried at elevated temperatures under vacuum.