Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nikolaenko, A.

  • Google
  • 2
  • 11
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Heat capacity and microhardness of the topological crystalline insulator Pb₁₋ₓSnₓTe near the band inversion composition3citations
  • 2010Switching metamaterials with electronic signals and electron-beam excitationscitations

Places of action

Chart of shared publication
Nashchekina, Olga
1 / 10 shared
Menshov, Yu.
1 / 1 shared
Rogacheva, E. I.
1 / 14 shared
Huang, Chung-Che
1 / 38 shared
Hewak, Daniel W.
1 / 80 shared
Knight, K.
1 / 13 shared
Angelis, F. De
1 / 5 shared
Sámson, Z. L.
1 / 4 shared
Adamo, G.
1 / 5 shared
Macdonald, Kevin
1 / 12 shared
Fabrizio, E. Di
1 / 5 shared
Chart of publication period
2017
2010

Co-Authors (by relevance)

  • Nashchekina, Olga
  • Menshov, Yu.
  • Rogacheva, E. I.
  • Huang, Chung-Che
  • Hewak, Daniel W.
  • Knight, K.
  • Angelis, F. De
  • Sámson, Z. L.
  • Adamo, G.
  • Macdonald, Kevin
  • Fabrizio, E. Di
OrganizationsLocationPeople

document

Switching metamaterials with electronic signals and electron-beam excitations

  • Huang, Chung-Che
  • Hewak, Daniel W.
  • Knight, K.
  • Angelis, F. De
  • Sámson, Z. L.
  • Adamo, G.
  • Macdonald, Kevin
  • Nikolaenko, A.
  • Fabrizio, E. Di
Abstract

We demonstrate that the material technology behind rewritable optical disks offers a new switching paradigm for metamaterials. Non-volatile optical switching devices are achieved through the hybridization of planar metamaterials with functional chalcogenide glass. We show experimentally that this phase-change medium can be switched in a hybrid metamaterial structure between amorphous and crystalline states by application of short electrical pulses or by stimulation with a focused electron beam.<br/><br/>We have achieved a significant shift in the resonant transmission spectrum of metamaterials based on metallic nanostructures that support plasmonic dark-mode resonances, hybridized with nanoscale layers of the chalcogenide gallium lanthanum sulphide. The transition between amorphous and crystalline forms brings about a 120 nm shift in the near-infrared resonance wavelength of the hybrid structure, providing transmission modulation functionality with a contrast ratio of 4:1 in a device of sub-wavelength thickness.

Topics
  • amorphous
  • phase
  • glass
  • glass
  • Lanthanum
  • metamaterial
  • Gallium